ОСОБЕННОСТИ ФОРМИРОВАНИЯ МИКРОПАТОГЕНОВ НА СЕМЕНА ПШЕНИЦЫ ОЗИМОЙ И МЕТОДЫ ИХ ОЦЕНКИ

Л.А. Фещенко, магистр

А.Д. Поспелова, канд. с.-х. наук, доцент (научный руководитель) Полтавская государственная аграрная академия (Украина, г. Полтава) e-mail: feschenko.lubow@mail.ru

В результате проведенных научных исследований по фитопатологической экспертизе были выделены и определены патогенные микроорганизмы заселяющие зерно, изучен их видовой состав на сортах пшеницы озимой: «Украинка полтавская», «Косоч», «Диканька», «Левада». Проведена оценка эффективности разных методов экспертизы (влажной камеры и отпечатков). Определены наиболее распространенные виды патогенов грибной этиологии.

Ключевые слова: экологизация, фитоекспертиза семян, пшеница озимая, микрофлора семян, грибная инфекция.

Постановка проблемы. Экологизация производства пшеницы озимой достигается в первую очередь уменьшением использования пестицидов, что возможно при проведении фитосанитарного мониторинга первым этапом которого является фитоєкспертиза семян.

Анализ исследований и публикаций. Высокое качество семян является одним из основных условий получения высоких и устойчивых урожаев пшеницы озимой. Семена богаты белками, углеводами и минеральными веществами поэтому являются благоприятным питательным субстратом для жизнедеятельности патогенных микроорганизмов. С семенами распространяется от 30 до 60% всех возбудителей сельскохозяйственных культур, ухудшающих качество и снижающих урожайность озимой пшеницы [1, 3].

Важным элементом профилактики поражения всходов является посев в почву здоровых семян, что достигается протравливанием семенного материала фунгицидами. Данный метод позволяет обеззаразить семена и уменьшает вредное воздействие патогенной микрофлоры на проростки на начальных этапах развития растения, хотя и не может защитить от поражения зерно нового урожая [1, 4].

Качество семян определяет будущее урожая. Кроме энергии прорастания, лабораторной всхожести, засоренности, влажности большое значение имеет интенсивность заражения семян патогенными микроорганизмами [3, 4].

Цель и задача – определить экологическое состояние партий семян, которые

используются для посева с целью предотвращения применения фунгицидных протравителей и уменьшение их поступления в окружающую среду.

Материалы и методы исследований. Изучение эпифитной и субэпидермальной микрофлоры семян пшеницы озимой сортов «Диканька», «Левада», «Украинская полтавская», «Косоч» было проведено на базе кафедры экологии, охраны окружающей среды и сбалансированного природопользования ПГАА. Посевные качества зерновок определяли по методикам ГОСТ 2240-93 путем проращивания в условиях влажной камеры на фильтровальной бумаге [2]. Проращивания происходило при температуре 23–25°С течение 14 дней.

Степень инфицирования семян и определение видового состава патогенов выражали в процентах от общего количества проанализированных зерновок. Исследования включали несколько операций, а именно: глазомерный анализ образцов; приготовления микроскопических препаратов из мицелия и спороношения грибов, которые проявились на инфицированных зерновках; анализ их с помощью светового микроскопа при увеличении 10×40 [2]. Кроме того, проводилась экспертиза семян методом отпечатков.

Результаты исследований. На качество посевного материала влияет целый ряд показателей, среди которых немаловажное значение имеют агроклиматические условия вегетационного периода, которые определяют формирование будущего урожая и контаминацию зерна патогенными микроорганизмами и условия хранения посевного материала.

Среди исследуемых сортов пшеницы озимой («Косоч», «Левада», «Диканька» и «Украинка полтавская») лучшим по посевным качествам за годы исследований оказался сорт «Левада». Лабораторная всхожесть котрого составила 89–92%, при этом инфицированность зерна минимальная 12–14,5% (табл. 1, 2).

Таблица 1 – Лабораторная всхожесть семян пшеницы озимой, 2012 г.

Название сорта	Лабораторная всхожесть семян, %				Cnarryag 0/
	1	2	3	4	Среднее, %
Диканька (St.)	90	91	88	87	89,0
Левада	94	88	95	91	92,0
Украинка полтавская	84	91	83	86	86,0
Косоч	88	89	91	92	90,0

Источник: результаты авторских исследований

Таблица 2 – Лабораторная всхожесть семян пшеницы озимой, 2013 г.

Название сорта	Лабораторная всхожесть семян, %				Cnorrigo 9/
	1	2	3	4	Среднее, %
Диканька (St.)	79	86	81	83	82,3
Левада	91	85	92	88	89,0
Украинка полтавская	82	87	83	85	84,3
Косоч	86	82	90	85	85,8

Источник: результаты авторских исследований

Привлекает внимание тот факт, что не всегда наблюдается прямая связь между лабораторной всхожестью семян озимой пшеницы сортов «Косоч», «Диканька» и пораженностью микропатогенами. При лабораторной всхожести семян сорта «Косоч» 85,8–90%, инфицированность составила 52–56,5%. У сорта «Диканька» лабораторная всхожесть 82,3–89%, инфицированность семян 25–26,3%

При микроскопировании инфицированных семян был выявленный разнообразный видовой состав грибов, которые по происхождению можно условно разделить на две группы: первичная инфекция, поражения которой происходит в период развития растения и вторичная — формируется в период хранения семян. Первичная инфекция была представлена грибами родов Fusarium, Alternaria, Helminthosporium. Вторичная состояла из грибов родов Mucor, Cladosporium, Penicillium, Aspergillus [1].

Наиболее разнообразный комплекс патогенов обнаружен на семенах сорта «Косоч». Особенно распространенными были плесневые грибы 43–53%, из них 39–37% приходится на грибы рода Mucor и по 2–3% на Penicillium и Aspergillus. В целом семян данного сорта заражено на 52–57%. Лучшая ситуация у семян сорта «Левада» (табл. 3).

Таблица 3 – Инфицированность семян пшеницы озимой урожая, 2012 г.

Название сорта	Колич	Количество пораженых семян, %			
	1	2	3	4	Среднее, %
Диканька (St.)	20	27	28	25	25
Левада	15	9	11	13	12
Украинка полтавская	29	35	39	45	37
Косоч	61	45	48	54	52

Источник: результаты авторских исследований

Количество здорового зерна составляет 88% в 2012 г. и 84% в 2013 г. К представителям первичной инфекции относятся роды Alternaria 2%, и Helminthosporium 1%. В то же время плесневыми грибами инфицировано 9% зерновок.

Процент здоровых семян у сортов «Украинка полтавская» и «Диканька» практически на одном уровне 73–75%, но на зерне пшеницы озимой сорта «Диканька» отсутствуют грибы рода Fusarium, что в дальнейшем может положительно повлиять на фитосанитарное состояние посевов и будущий урожай культуры. В тоже время, плесневые грибы составляют 21%, что на 16% больше чем у сорта «Украинка полтавская».

Таблица 4 – Инфицированность семян пшеницы озимой, 2013 г.

Название сорта	Количество пораженых семян, %				Спониос 9/
	1	2	3	4	Среднее, %
Диканька (St.)	23	26	31	25	26,3
Левада	16	18	10	14	14,5
Украинка полтавская	52	41	38	46	44,3
Косоч	59	48	62	57	56,5

Источник: результаты авторских исследований

Аналогичная ситуация наблюдается и на семенах пшеницы озимой урожая 2013 г. Однако следует отметить, что на всех исследуемых сортах идентифицировались споры гриба рода Cladosporium, который является большим вредителем для будущих урожаев. Таким образом, с помощью метода влажной камеры мы можем оценить лабораторную всхожесть и инфицированность патогенами семян исследуемых сортов и определить их видовой состав.

Для изучения возможности внедрения в фитоекспертизы семян метода отпечатков, с целью упрощения и ускорения анализа, мы провели исследование степени заражения зерновок с помощью скотча. Необходимо отметить, что в большинстве случаев этот метод не показал всего спектра видов микромицетов, в частности это касается грибов родов Mucor, Aspergillus, Penicillium споры которых очень близки по форме, размерам и окраске (табл. 5). Однако, он является удобным для выявления на поверхности зерновок спор возбудителя твердой головни пшеницы и определения инфекционной нагрузки на 1 зерновку.

Таблица 5 — Результаты анализа характера заражения семян методом отпечатков

		% инфици	рованных	Степень инфицирования		
Сорт	Виды грибов	cen	нки	семян, спор на 1 зернину		
		2012 г.	2013 г.	2012 г.	2013 г.	
Диканька	Alternaria	20	70	2,2	10,0	
	Cladosporium	10	12	1,5	2,0	
	Fusarium	-	3	-	2,0	
	Tilletia caries	20	10	7,3	2,0	
Vicnorium	Alternaria	60	50	5,6	9,3	
Украинка полтавская	Cladosporium	30	-	2,2	-	
	Tilletia caries	-	30	-	6,5	
Косоч	Alternaria	30	40	5,3	9,5	
	Cladosporium	-	20	-	2,3	
	Fusarium	10	10	2,6	1,0	
	Thrichothecium	-	20	-	1.4	
	Tilletia caries	-	30	-	6,1	
Левада	Alternaria	60	40	5,4	5,0	
	Fusarium	20	10	2,8	1,0	
	Tilletia caries	10	-	2,2	-	

Источник: результаты авторских исследований

Следует отметить, что наибольшая степень инфицирования семян этим возбудителем была зарегистрирована в 2012 г. на сорте «Диканька» (7,3 споры / зерновку), а в 2013 г. на сортах «Украинская полтавская» и «Косоч» (6,5 и 6,1 спор / зерновку соответственно). Прекрасно выделяются споры грибов рода Alternaria имеющие характерную форму и окраску. Они были выявлены на зерновках всех исследуемых сортах. Наиболее высоким уровнем контаминации характеризовался сорт «Диканька», у которого этот показатель варьировал от 2,2 до 10,0 спор на 1 зерновку в годы исследований. Нужно отметить, что в 2013 г. на сортах «Диканька», «Украинка полтавская» и «Косоч» инфицирования зерна этим типом спор было значительно выше, чем в 2012 г., что абсолютно совпадает с данными анализа на селективной среде.

Выводы и перспективы дальнейших исследований. Каждый из протестированных в нашей работе методов имеет свои преимущества и недостатки. Так, проращивание семян на селективной среде дает возможность выявить как поверхностную, так и внутреннюю инфекцию, которая содержится в семенной оболочке, а анализируя фитосанитарное состояние семян методом отпечатков удается зафиксировать наличие спор головневых грибов. Исходя из

этого, мы рекомендуем проведение двухступенчатой фитоэкспертизы семян – сначала методом отпечатков, который является более оперативным, а затем – биологическим методом, который дает отдаленные во времени, но более точные результаты.

Библиографический список

- 1. Микроорганизмы возбудители болезней растений / В.И. Билай, Р.И. Гвоздяк, И.Г. Скрипач [и др.]; под ред. В.И. Билай. К. : Наукова думка, 1988. 552 с.
- 2. Насіння сільськогосподарських культур. Методи визначення якості: ДСТУ 4138-2002 [Чинний від 2004-01-01]. К.: Держспоживстандарт України, 2003. 173 с. (Держспоживстандарт України).
- 3. Ретьман С.В. Мікрофлора зерна озимої пшениці / С.В. Ретьман // Карантин і захист рослин. 2008. № 2. С. 2–3.
- 4. Семенов А.Я. Инфекция семян хлебных злаков / А.Я. Семенов, Р.Н. Федорова. М.: Колос, 1984. 94 с.

МИНИСТЕРСТВО АГРАРНОЙ ПОЛИТИКИ И ПРОДОВОЛЬСТВИЯ УКРАИНЫ

Полтавская государственная аграрная академия Варшавский университет сельского хозяйства, Польша Вроцлавский университет, Польша

Государственный аграрный университет Молдовы, Молдавия Днепропетровский государственный аграрно-экономический университет Житомирский национальный агроэкологический университет Краковский политехнический университет им. Т. Костюшки, Польша Национальный университет водных ресурсов и природопользования Новосибирский филиал ФГБОУ ВПО «Российский экономический университет им. Г.В. Плеханова», Россия

Рязанский государственный агротехнологический университет им. П.А. Костычева, Россия

Сибирский научно-исследовательский институт экономики сельского хозяйства Россельхозакадемии, Россия

Томский сельскохозяйственній институт – филиал ФГБОУ ВПО «НГАУ», Россия ФГБОУ ВПО «Курганская государственная сельскохозяйственная аграрная академия им. Т.С. Мальцева», Россия

Харьковский национальный аграрный университет им. В.В. Докучаева

РАЗВИТИЕ АПК НА ОСНОВЕ РАЦИОНАЛЬНОГО ПРИРОДОПОЛЬЗОВАНИЯ: ЭКОЛОГИЧЕСКИЙ, СОЦИАЛЬНЫЙ И ЭКОНОМИЧЕСКИЙ АСПЕКТЫ

Материалы

Международной научно-практической конференции 26 декабря 2014 года

Полтава

2014

УДК 338.43(477):504.062.2 ББК 65.9(4Укр)32:20.18 М-43

Рекомендовано к публикации ученым советом Полтавской государственной аграрной академии (протокол № 12 от 27.01.2015 г.)

Редакционная коллегия:

Писаренко П.В. – первый проректор, зав. кафедрой земледелия и агрохимии им. В.И. Сазанова ПГАА, д.с.-х.н., профессор, член-кор. ИАУ;

Подгорбунских П.Е. – ректор Курганской ГСХА, д.э.н., профессор;

 $Bиноградов \ \mathcal{A}.B.$ — начальник управления международной и инновационной деятельности, зав. кафедрой технологии производства, хранения и переработки продукции растениеводства $\Phi \Gamma EOY B\Pi O P\Gamma ATY$, д.б.н., профессор;

Kлименко H.O. — директор учебно-научного института агроэкологии и землеустройства, зав. кафедрой экологии НУВРП, д.с.-х.н., профессор, академик МАНЭБ;

Дегтярев В.В. – первый проректор, зав. кафедрой земледелия XHAУ им. В.В. Докучаева, д.с.-х.н., профессор;

 $C \kappa u \partial a H O.B.$ — проректор по научной работе и инновационному развитию ЖНАЭУ, д.э.н., профессор;

Гриценко Г.М. – зам. директора по внешнеэкономическим и межрегиональным научным связям ГНУ СибНИИЭСХ Россельхозакадемии, д.э.н., профессор;

Ульянченко А.В. – зав. кафедрой производственного менеджмента и агробизнеса XHAУ им. В.В. Докучаева, д.э.н., профессор, член-кор. HAAH;

Чудинова Ю.В. – зам. директора по научной работе ТСХИ, д.б.н., профессор кафедры агрономии и технологии производства и переработки сельскохозяйственной продукции;

Мажайский Ю.А. – главный научный сотрудник ГНУ ВНИИМЗ Россельхозакадемии, д.с.-х.н., профессор.

Развитие АПК на основе рационального природопользования: экологический, социальный и экономический аспекты : материалы Международ. научно-практ. конф. (Полтава, 26 дек. 2014). — Полтава : ПГАА, 2014. - 276 с.

В сборнике представлены материалы конференции по следующим направлениям: экология, социальная сфера, сельское хозяйство, экономика. Материалы предназначены для научных сотрудников, преподавателей, студентов и аспирантов высших учебных заведений, специалистов и руководителей сельскохозяйственных и перерабатывающих предприятий АПК разной организационно-правовой формы, работников государственного управления, образования и местного самоуправления, всех, кто интересуется проблематикой развития экологического хозяйствования, общества, сельского хозяйства и экономики. Материалы изданы в авторской редакции.

- © Авторы статей, включенных в сборник, 2014
- © Полтава, 2014