

Ministry of Education and Science of Ukraine
National Aerospace University n. a. N. E. Zhukovsky

“Kharkiv Aviation Institute”

V. Sklyar, V. Kharchenko, E. Babeshko, A. Kovalenko, O.Illiashenko,
O. Rusin, A. Panarin, S. Razgonov, D. Ostapec, I. Zhukovyts’kyy, S. Stirenko,

O. Tarasyuk, A. Gorbenko, A. Romanovsky, O. Biloborodov, I. Skarha-
Bandurova, E. Brezhniev, A. Stadnik, A. Orekhov, T. Lutskiv, V. Mokhor,
O. Bakalynskyi, A. Zhylin, V. Tsurkan, M. Q. Al-sudani, Yu. Ponochovnyi

SECURE AND RESILIENT COMPUTING FOR
INDUSTRY AND HUMAN DOMAINS.

Secure and resilient
systems, networks and

infrastructures
Multi-book, Volume 2

V. S. Kharchenko eds.

Tempus project
SEREIN 543968-TEMPUS-1-2013-1-EE-TEMPUS-JPCR

Modernization of Postgraduate Studies on Security and Resilience for
Human and Industry Related Domains

2017

V. Sklyar, V. Kharchenko, E. Babeshko, A. Kovalenko, O.Illiashenko, O. Rusin, A. Panarin, S.
Razgonov, D. Ostapec, I. Zhukovyts’kyy, S. Stirenko, O. Tarasyuk, A. Gorbenko, A.
Romanovsky, O. Biloborodov, I. Skarha-Bandurova, E. Brezhniev, A. Stadnik, A. Orekhov, T.
Lutskiv, V. Mokhor, O. Bakalynskyi, A. Zhylin, V. Tsurkan, M. Q. Al-sudani, Yu. Ponochovnyi.
Secure and resilient computing for industry and human domains. Volume 2. Secure and
resilient systems, networks and infrastructures / Edited by Kharchenko V. S. –
Department of Education and Science of Ukraine, National Aerospace University named
after N. E. Zhukovsky “KhAI”, 2017.

Reviewers:
Dr. Peter Popov, Centre for Software Reliability, School of Informatics, City Universi-ty of
London

Prof. Stefano Russo, Consorzio Interuniversitario Nazionale per l’Informatica
(Na-ples, Italy)

Prof. Todor Tagarev, Centre for Security and Defence Management, Institute of In-
formation and Communication Technologies of the Bulgarian Academy of Sciences;

Prof. Jüri Vain, School of Information Technologies, Department of Software Tallinn
University of Technology

The second volume of the three volume book called “Secure and resilient computing
for industry and human domains” contains materials of the lecture parts of the study
modules for MSc and PhD level of education as well as lecture part of in-service training
modules developed in the framework of the SEREIN project "Modernization of

Postgraduate Studies on Security Resilience for Human and Industry Related Domains"
1

(543968-TEMPUS-1-2013-1-EE-TEMPUS-JPCR) funded under the Tempus programme are
given. The book material covers fundamentals issue of secure and resilient computing, in
particular, description of related standards, methods of cryptography, software security
assurance and post-quantum computing methods review.

The descriptions of trainings, which are intended for studying with technologies and
means of assessing security guarantees, are given in accordance with international stand-
ards and requirements. Courses syllabuses and description of practicums are placed in the
correspondent notes on practicums and in-service training modules.

Designed for engineers who are currently or tend to design, develop and implement
information security systems, for verification teams and professionals in the field of quali-
ty assessment and assurance of cyber security of IT systems, for masters and PhD stu-
dents from universities that study in the areas of information security, computer science,
computer and software engineering, as well as for lecturers of the corresponding courses.

The materials in the book are given in a form “as is”, desktop publishing of this book
is available in hard copy only.

© V. Sklyar, V. Kharchenko, E. Babeshko, A. Kovalenko, O.Illiashenko, O. Rusin, A. Panarin,
S. Razgonov, D. Ostapec, I. Zhukovyts’kyy, S. Stirenko, O. Tarasyuk, A. Gorbenko, A. Romanovsky,
O. Biloborodov, I. Skarha-Bandurova, E. Brezhniev, A. Stadnik, A. Orekhov, T. Lutskiv, V. Mokhor,
O. Bakalynskyi, A. Zhylin, V. Tsurkan, M. Q. Al-sudani, Yu. Ponochovnyi. 2017

This work is subject to copyright. All rights are reserved by the authors, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms, or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or

dissimilar methodology now known or hereafter developed.

1
 This project has been funded with support from the European Commission. This publication (com-

munication) reflects the views only of the author, and the Commission cannot be held responsible for
any use which may be made of the information contained therein.

36 ASSESSMENT OF SMART BUILDING

AUTOMATION SYSTEMS REALIABILITY AND

CYBER SECURITY USING ATTACK AND

FAULT TREES

As noted in Chapter 35, in several cases maintenance of Building

automation system (BAS) architecture components stops at the

operation phase. However, due to circumstances, it is impossible to

refuse application of such components or they might have low cost.

Moreover, when developing specifications for information and control

systems of smart buildings to assess the reliability and cyber-security

the selection of the non-failure operating probability criterion (NOP) of

the system can be justified.

In this Chapter, we discuss the application of the Attack Tree

Analysis (ATA) technology to assess the impact of each component of

the system architecture on its reliability and cyber security. Using ATA

does not take into account recovery and maintenance, but it allows

monitoring any attacks on components and assessing the impact of

these attacks on the system as a whole. In the second part of the

Chapter, strategies of developing Markov models for describing the

recovery of system components after an attack or a software failure are

discussed. The use of ATA or Markov models is usually justified by the

customer's requirements for a specific criterion for assessing the quality

of the system.

36.1 A conceptual approach to assessing reliability and cyber-

security of smart building information and control systems

In this Chapter, with respect to the BAS, the main requirement of

the user (client) is to ensure a given system availability, the second

requirement is to ensure the cyber security of the system and

information throughout the life cycle.

For the three-level BAS architecture considered in the thesis, the

system-wide availability is influenced by the components of all its

levels. The failure of the communication level component directly

affects the availability of the system, since the impossibility of

transferring the administration commands isolates the lower-level

actuators. In addition, the communication level is most accessible for

attacks on its components, which reflects its contribution to system-

wide cyber security. Components of other levels (management,

automation) also affect the availability of BAS; attacks on them can be

identified through monitoring and analysis of system performance.

Given the distribution of these levels, it is assumed that single failures

of their components do not lead to system shutdown in general.

36.1.1 Basic principles

The architectures of information and control systems of smart

buildings can be structurally different from each other, depending on

the area where they will be applied (hospitals, departmental buildings,

etc.). Fig. 36.1 shows the tree of high-level architecture attacks built

using the ATA approach.

Automation levelManagement level Communication level

System failure

Fig. 36.1 – Presentation of the BAS architecture using the ATA

approach

The Attack Tree Analysis is considered as an analytical method in

which ways of achieving an undesirable state of the system (in

particular, a failure state) are examined. The purpose of the ATA

analysis is to assess the reliability and cyber security of the system.

This helps architecture developers to understand how the system works

with weak points in the project, which can be used by attackers. The

ATA analysis shows which requirements for system components need

to be increased to ensure cyber security and reliability throughout the

life cycle. When using this toolkit, the system is analyzed in the context

of the surrounding operating environment to find all possible ways of

failure occurrence. When constructing the model in the form of an

event tree, two types of gates are used (AND, OR). The event after gate

"AND" occurs with simultaneous manifestation of changes at the input

of the gate. The event at the output of the "OR" gate arises if at least

one change in the state of the component occurs at its input.

Fig. 36.1 shows the upper level tree of the ATA analysis of the

BAS architecture, including three levels. The ATA tree allows to

prioritize each level when creating a complex failure event of the

system as a whole. Fig. 36.1 shows that the communication level has

the highest priority and direct connection via the "OR" gate to the

system failure state. The other two levels are connected to each other

through the "AND" gate, they cannot independently lead the system to

a fault state, and system failure occurs only when faults occur at these

levels simultaneously. Nevertheless, the probability of such an event

must be taken into account.

When there is a need to analyze the cyber-security of the system,

we should choose a specific event – a failure or attack on the system

component as a target of the attacker, and then determine the

immediate, necessary and sufficient reasons for achieving this goal.

Such reasons may not be fundamental to a system-wide failure, but they

are the immediate causes for this event. They are considered as sub-

goals, or targets of the second level of the attacker. In determining all

immediate, necessary and sufficient reasons, a step-by-step analysis of

the tree from top to bottom is performed until the ATA model

resolution limit is reached, that is, the atomic failure event of the BAS

component.

Taking into account all possible targets for attacks that can be

directed to the system and its components at each level, then it is

necessary to consider the scenarios of cyber-attacks.

36.1.2 General scheme of the dependability analysis

Taking into account the positions of reliability and cyber security

allows expanding the list of causes of failures and weaknesses of the

system within the framework of a unified dependability concept. In the

direction of reliability, hardware and software defects, as well as

interaction defects due to operating personnel errors and attacks on the

system are analyzed. On the cyber security aspect, software

vulnerabilities, Trojans and backdoors are analyzed (Fig. 36.2).

Building automation

system (BAS)

Operation (physical)

failures

Manufacturer

(physical) failures

Software (design)

failures

Hardware (Trojan/

backdoors)

Software

vulnerabilities

Reliability issue Security issue

Fig. 36.2 – Causes of failures in BAS components taking into account

aspects of reliability and cyber security

36.2 Vulnerability analysis of smart building information and

control systems components

According to [1], the BAS architecture has three levels, therefore,

vulnerability analysis should be performed for components of these

levels. Identifying and assessing the vulnerabilities of these levels helps

the developer to manage risks and determine the degree of threat at the

design stage of the system. According to the analysis carried out in [2],

the main elements of the system architecture that have a high level of

threat are FPGA, database, communication. The information obtained

in the analysis of vulnerabilities can be used to compile IMECA

matrices and forms the basis for designing ATA models.

36.2.1 Analysis of vulnerabilities of FPGA devices

A field-programmable gate array (FPGA) is produced as a ready-

to-use electronic device. For application in digital systems, such

devices must be programmed. The advantages of FPGA-platforms

include simplicity of tuning and cost-effectiveness. In addition, such

platforms can be updated during the lifetime, it is simply enough to

download a new application code. FPGA-platforms have other

advantages, but, nevertheless, their main advantage is the design

flexibility. When analyzing the cyber security of FPGA platforms, it is

necessary to take into account all the features of the life cycle of both

FPGA chips and information and control systems (I&C) based on

FPGAs. Participants of the processes are manufacturers of FPGA chips,

designers and developers of I&C systems as well as users of I&C

systems based on FPGA. Cyber-security analysis for FPGA technology

covers the design and development processes as well as the operation of

integrated I&C systems. It should be noted that cyber-security

vulnerabilities could be introduced by:

- a manufacturer of FPGA chips in the design, production, setup

and testing of FPGA microcircuits;

- a developer of I&C systems at the design, coding and testing

stages;

- an I&C operator of the system during operation and maintenance.

36.2.2 Analysis of vulnerabilities in databases

Recently, the number of attacks on databases (DBs) has increased.

This is due to the growing demand for data stored in the database and

the expansion of access to databases via the global network. The

databases in I&C systems of smart buildings contain information that is

important for the system and its various levels for controlling executive

devices.

When we expand access rights to the stored information for

several users, this increases the likelihood of data theft. Therefore, in

BASs access to the database must be constantly monitored. An attacker

seeks to gain access to important information that he can use to attack

or monitor the system. Various types of threats that affect the

cybersecurity of databases are given below.

1. Abuse of rights and privileges. The threat arises in a situation

where database users have more privileges than it is required to perform

functional duties. These privileges can be deliberately or

unintentionally transmitted to intruders.

2. Vulnerabilities of operating systems, such as Windows, UNIX,

Linux, etc., as well as OS services that interact with databases, can act

as a means for unauthorized access. Such vulnerabilities can also be

used for denial of service (DoS) attacks. As a rule, they are fixed after

installing/updating the operating system security patches.

3. Rootkits (rootkits) of databases. A rootkit is a program or

procedure that is hidden inside the management system (DBMS) and

provides administrative privileges to access data and disable the

Intrusion Prevention Systems (IPS). The rootkit can be installed after

using the vulnerabilities of the main operating system. Identification of

rootkits is performed using periodic audits; when there are no such

audits, the presence of a rootkit in the database can remain unnoticed.

To gain credentials for entering the database, attackers can use different

strategies (social engineering, direct search of passwords), and they can

be successful in case of using weak authentication methods. In the

presence of a rootkit, the DBMS assumes that the attacker has the

identity of legitimate database users.

4. Weakening the requirements for auditing. The presence of

simplifications and weaknesses in the mechanisms of DBMS audit and

event logging can become a critical threat for the system, especially in

industries with strict regulatory requirements. To restore the history,

prior to incidents, the protocols PCI, SOX and HIPAA, which allow for

advanced logging, are used. It should be noted that the logging of

suspicious or undefined operations in the database must be performed

automatically. The audit log is the last line of cybersecurity in the

database. The records in it allow detecting an intrusion, which in turn

will help to track violations of a particular user at a certain point in

time.

36.2.3 Analysis of the vulnerabilities in wireless

communications

In the architecture of wireless communications, there are four main

components [3]. They include the radio frequency data channel; access

points providing connection to the network of the organization;

transceivers of end devices (laptops, smartphones, etc.); and programs

with a user interface. These components may be vulnerable and subject

to attack, which will lead to breach of confidentiality, integrity and

availability [4]. The following types of attacks on wireless

communications are analyzed.

1. Unintentional association, the type of unauthorized access to the

company's wireless networks. When a user turns on the computer and

connects to a wireless access point that belongs not to a corporate, but

to the neighboring network, it may not even know that this has

happened. Such a violation of cybersecurity can reveal valuable

information about the company and create a connection between the

company's network and a fake network [5]. The same incident can

occur with a laptop connected to a wired network.

2. Peer-to-peer networks. Such networks are often organized to

exchange data between two wireless devices. Despite the possibility of

using enhanced encryption methods, as a rule, they are neglected when

creating peer-to-peer networks [6].

3. "Man-in-the-middle" attack: an attacker creates a program

access point (AP), which connects corporate users. After that, the

attacker connects to a real access point using another wireless card that

provides a constant stream of traffic through a transparent hacker

network to the real network [7]. Thus, an attacker can listen to the

traffic.

4. Denial-of-service attack (DoS). An attacker organizes a constant

load on the target access point or network using dummy requests, error

messages, messages about premature successful connections, and/or

other commands. Due to this attack, users cannot access the network.

These attacks are based on abuse of protocols, such as the Extensible

Authentication Protocol (EAP).

36.2.4 Scenarios of cyber-attacks on information and control

systems of smart buildings

Cyber-attacks are conducted to disrupt the normal operation of the

BAS by stealing, modifying or destroying data, or code. One way to

conduct cyber-attacks is to hack personal computer systems or I&C

systems of organizations, their infrastructure, computer networks,

and/or personal computer devices. Typically, the source of cyber-attack

is difficult to detect, since an attacker makes efforts to ensure

anonymity. Such attacks can be organized not by individuals, but by

whole cyber-campaigns within the framework of cyber war or cyber

terrorism. The ways to implement cyber-attacks include installing

spyware on a PC, destroying the infrastructure of an organization or

even a whole state. Every day, the complexity and danger of cyber-

attacks increases.

Like random components failures, cyber-attacks can be directed to

hardware channels and BAS software. Since the BAS components are

accessed from the global network [8], they are all potential targets of

cyber-attacks.

Attacks on hardware can use embedded code or errors made to the

chip through the fault of the manufacturer. Therefore, a hardware

bookmark, virus or worm can be active for some time. Software attacks

can be carried out using various tools for monitoring and reading data,

for example, scanning the radio channel of wireless devices for

transmitting and receiving data.

Scenarios of cyber-attacks on hardware channels or software can

cause a system-wide failure through a hardware failure and errors in the

software component.

To analyze the cyber security of BAS, it is necessary to analyze

and study all possible attacks on the system, to predict how an attacker

will attempt to access the system from the inside. [9] The scenarios of

cyber-attacks on the BAS can be divided into three parts:

1. The attacker gets access with the help of special tools for

monitoring the network. Access is an intermediate goal. At the initial

stage, the attacker's goal is to monitor the network and read the inter-

level data exchange.

This type of attack cannot be detected for a long time, since it

often has no signs of detection during system operation. The way to

counter these kinds of attacks is to enhance the cyber security of the

network.

2. In the second part of the scenario, the attacker's goal is to disrupt

the system. This can be performed by introducing malicious code

(virus, worm) into the system. The recovery time of the system after

this attack is different and depends on the level that has been attacked:

a) if the attacker seeks to capture the automation level and stop one

of its components, it is possible to detect a system error and restore the

code by changing or updating the system during recovery. Without

removing the code, the system can also save partial operability;

b) if the target of the attacker is the management level, then the

recovery process will be difficult, since this level controls all system

tasks and it is difficult to conduct maintenance without a complete

shutdown of the system. A cyber-attack on the management level

causes a long recovery time and high costs for renewal.

3. If an attacker becomes aware of design errors, then cyber attacks

can be carried out directly.

The described stages of cyber-attack scenarios are systematized

and presented in Fig. 36.3. This scheme can be used to understand the

attacker's strategy when he tries to access and attack BAS.

Cyber

attack

Misuse of computer

system

Acces to computer

system
Consequence

Enabling

events

Initiation Penetration Action Tremination

Fig. 36.3 – The main stages of cyber-attack scenarios on BAS

36.3 Development of models for assessing the cyber security of

smart building I&CS using FMECA and ATA technologies

The overall goal of attacks can be characterized as a violation of

the performance of system functions defined at the design stage.

Identification of failures implies the definition of the characteristics of

potential mechanisms for their occurrence and an assessment of the

probability of failure in real systems during the operational phase. In

order to protect the system, developers and users should find answers to

the three following questions: "How the system can fail?" "What

consequences will the failure have?", and "How much can the system

handle?". To answer these questions, FMECA and ATA techniques

have been developed, which will be considered further for assessing

cyber-attacks on BAS architecture components.

36.3.1 BAS analysis using the FMECA and IMECA

methodologies

Failure Modes and Effects Analysis (FMEA) is a technological

process that is used to study the potential consequences of failures of

the system on it and its environment [10]. If this takes into account the

criticality of failures, then the method is called Failure Modes, Effects

and Criticality Analysis (FMECA) [11]. FMEA and FMECA are the

most popular tools for finding design defects during the development of

the system. They also facilitate the search and elimination of defects

during the operation of the system. In this paper, in addition to these

methods, the method of assessing the types, consequences and

criticality of external influences – IMECA – is also used [12]. Unlike

FMEA and FMECA, it considers system failures caused by malicious

external actions (intrusions). In accordance with the scenario of cyber-

attacks discussed in the previous subsection, we can apply IMECA to

analyze the cyber security of a BAS within this scenario and measure

the level of failures of system architecture components. According to

the analysis of cyber security, the components of the system can be

divided into subsets of elements (hardware, software). In this paper,

FMEA was used to illustrate the impact of attacks on the operability of

the system hardware (Table 36.1). IMECA is used to analyze the

software component of the system, as shown in Table 36.2.

Table 36.1 – System FMECA analysis of BAS according to cyber-

attack scenarios

Architecture

level

Failure

type

Failure

cause

Failure

consequences

Management

level
Hardware

Operator

errors or

design

defects

This level is

represented as a

system control unit; a

failure will lead to the

system shutdown

Management

level
Hardware

Design

errors or

intrusion

into

components

System downtime and

recovery time will be

long and costly, since

there is a need to

modify the hacked

component

Automation

level
Hardware

End device

shutdown

The system works

without downtime

and with limited data

entry. The recovery

time will be short,

since the hacked

sensor can be quickly

replaced

Table 36.2 – System IMECA analysis of BAS according to cyber-attack

scenarios

A
rc

h
it

ec
tu

re

le
v
el

C
o
m

p
o
n
en

t

T
y
p
es

 o
f

at
ta

ck

Cause of

failure

Impact on

operabilit

y

Consequences

Cybersecurity Availability

C
o

m
m

u
n

ic
at

io
n

 l
ev

el

W
i-

F
i

P
as

si
v
e

An attacker

has access to

the wireless

network and

monitors all

transmitted

data

Failures

An attacker

knows all the

transmitted data

Impact on

availability

is not

provided

A
ct

iv
e

After an

attack, the

access is

obtained to

enter the

network; an

attacker

breaks the

connection

between the

levels using

various tools

(viruses,

bookmarks)

Denials

The purpose of

the attack is to

disable the

system and

completely

disable the

security system

Full impact

on

availability,

as the system

goes into the

failure mode

until the

vulnerability

is identified

and removed

M
an

ag
em

en
t

le
v
el

D
B

P
as

si
v
e

After a

successful

cyber-attack,

an attacker

gets access

to a database

for reading

and

recording

information

Failures

The security of

the system is

compromised,

since an

attacker

controls the

data inside the

system

The

availability

of the system

depends on

the purpose

of the

attacker: he

can either

steal data or

damage them

and disable

the system

36.3.2 Models of components of the BAS architecture in the

form of an ATA tree

To begin with, the ATA models presented in Figs. 2.4-2.6 are

considered. Increasing the Attack Trees was carried out gradually from

below-upwards. Initially, the trees of the components of individual

levels were built (examples are given: the ZigBee protocol of the

switching level in Fig. 36.5 and the FPGA controllers of the automation

level in Fig. 36.4).

FPGA

Operation physical

failures

Manufacturer

(physical) failures
Software error

Hardware (Trojan/

backdoors)

Software

vulnerabilities

Physical fault

(defect)
Data Design fault Data

hardware

Trojan fault
Attacks

Design

vulnerability
Attacks

Reliability issue Security issue

Physical attacks

Fig. 36.4 – Attack Tree model of FPGA controllers

ZigBee

dependability

Operation physical

failures

Manufacturer

(physical) failures
Software error

Hardware (Trojan/

backdoors)

Software

vulnerabilities

Physical fault

(defect)
Data Design fault Data

hardware

Trojan fault
Attacks

Design

vulnerability
Attacks

Reliability issue Security issue
Fig. 36.5 – Attack tree model of ZigBee protocol

Then, an ATA tree was built for the entire BAS system. For this

tree, calculations were made of the probability of a failure in a subset of

cybersecurity, the results of which are summarized in Table 36.3.

3

7 9

Automation

level (3)
Management

level(2)

SCADA (5)

Software fault

(17)

Hardware

manufacture

fault (16)

Ends devices

(9)

Software

vulnerabilities

(21)

FPGA (10)

Communication

level (4)

Wireless

network (13)

Physical

attacks (22)

Zigbee (11)Database (8)

Software

vulnerabilities

(26)

Manufacture

hardware(Trojan/

backdoors)(25)

11

System security (1)

Manufacture

hardware(Trojan/

backdoors)(23)

Software

vulnerabilities

(24)

10

Manufacture hardware(

Trojan/backdoors) (20)

Manufacture

failure (18)

Physical

attacks (19)

86

Software

vulnerability

(15)

Manufacture hardware

(Trojan/backdoors)

(14)

2

1

4 5

Web server (7)
Central control

station(6)
Protocol (12)

Fig. 36.6 – Attack tree model of BAS components for assessing static

indicators of cyber security

Table 36.3 – Calculation of a failure probability of the information and

control system in a smart building according to cyber security

indicators

Architecture

level

Component

No

Vulnerability class

of BAS component

Probability of

successful

attack

P
ro

b
ab

il
it

y
 o

f
fa

il
u
re

 o
f

B
A

S
 a

s
a

re
su

lt
 o

f
ex

te
rn

al
 i

n
fl

u
en

ce
s

(a
tt

ac
k
s

o
n
 v

u
ln

er
ab

il
it

ie
s)

 0
.0

0
0
2
8
1
4
6
8

M
an

ag
em

en
t

le
v
el

1

Manufacture

hardware

(Trojan/backdoors)

(14) 0.0000842

2
Software

vulnerability (15) 0.0000458

3
Hardware

manufacture (20) 0.0000789

4 Software fault (21) 0.0000523

5
Central control

station (6) 0.0000157

6 Web server (7) 0.0000791

A
u

to
m

at
io

n
 l

ev
el

7
Manufacture failure

(16) 0.0000825

8
Physical attacks

(17) 0.0000423

9

Manufacture

hardware

(Trojan/backdoors)

(22) 0.0000373

10
Software

vulnerability (23) 0.0000656

11
Physical attacks

(24) 0.0000474

C
o
m

m
u
n
ic

at
io

n
 l

ev
el

12

Manufacture

hardware

(Trojan/backdoors)

(18) 0.0000063

13
Software

vulnerability (19) 0.0000888

14

Manufacture

hardware

(Trojan/backdoors)

(25) 0.0000764

15
Software

vulnerability (26) 0.0000678

16 Protocol (13) 0.0000421

36.3.3 Models of BAS architecture in the form of FTA and

AvTA trees

The approach proposed in the work allows to identify the causes of

failures in a complex multi-level system, which is especially important

when analyzing the vulnerabilities of individual components of lower

levels. The model considered earlier (Fig. 36.1) needs to be improved

for the subsequent combination of two types of failure trees (FTA –

Fault Tree Analysis and ATA – Attack Tree Analysis) and accounting

for recovery processes (AvTA-Availability Tree Analysis).

The developed BAS models in the form of separate trees (FTA,

ATA and AvTA) are presented in Fig. 36.7 … Fig. 36.9. With the help

of the constructed trees, the calculation of the probability of the system

failure due to software defects and attacks on vulnerabilities has been

made, the results of which are presented in Table 36.4.

Table 36.4 – Calculation of the probability of failure-free operation of

the smart building I&C system in terms of reliability and cyber security

Arch.

level
Subset Component

Name of the AvTA

input parameter

Value

(probability)

H
ar

d
w

ar
e

R
el

ia
b

il
it

y

FPGA

physical operation

failure (hardware) 0.0012

P
ro

b
ab

il
it

y

o
f

sy
st

em

fa
il

u
re

=
0
.0

0
1
5
9
0
0
8
9

physical operation

failure (soft hardware

error) 0.002

manufacture failure

(hardware) 0.25

ZigBee

physical operation

failure (hardware) 0.0021

physical operation

failure (soft hardware

error) 0.1265

manufacture failure 0.15157

(hardware)

Database

physical operation

failure (hardware) 0.17664

physical operation

failure (soft hardware

error) 0.20171

Rec/hardware
recovery depending on

type of failure 0.8

S
ec

u
ri

ty
 FPGA

intrusion failure (severe

hardware vulnerability) 0.25185

intrusion failure (soft

hardware vulnerability) 0.27692

Ahw
attack by intruder

(hardware) 0.30199

Rec/software
recovery depending on

type of failure 0.5

S
o

ft
w

ar
e

R
el

ia
b

il
it

y

FPGA

failure caused by design

fault (software) 0.005

failure caused by

software design (soft

software error) 0.015

failure caused by

ageing(software) 0.025

ZigBee

failure caused by design

fault (software) 0.035

failure caused by

software design (soft

software error) 0.045

failure caused by

ageing(software) 0.055

Database

failure caused by design

fault (software) 0.065

failure caused by

software design (soft

software error) 0.075

failure caused by

ageing(software) 0.085

Rec/hardware
recovery depending on

type of failure 0.8

S
ec

u
ri

ty

FPGA

intrusion failure (severe

software vulnerability) 0.0215

intrusion failure (soft

software vulnerability) 0.078

attack by intruder

(software) 0.325

Database

intrusion failure (severe

software vulnerability) 0.445

intrusion failure (soft

software vulnerability) 0.59675

attack by intruder

(software) 0.7485

ZigBee

intrusion failure (severe

software vulnerability) 0.90025

intrusion failure (soft

software vulnerability) 0.0252

attack by intruder

(software) 0.0785

Rec/software
recovery depending on

type of failure 0.5

F
P

H
F

P
H

E
F

M
H

R
e

lia
b

ili
ty

R
e

c
/

h
a

rd
w

a
re

H
a

rd
w

a
re

 f
a

ilu
re

F
P

H
F

P
H

E
F

M
H

F
P

H
F

P
H

E
F

D
S

F
D

S
E

F
A

S

R
e

lia
b

ili
ty

R
e

c
/

h
a

rd
w

a
re

F
D

S
F

D
S

E
F

A
S

F
D

S
F

D
S

E
F

A
S

F
P

G
A

D
a

ta
b

a
s
e

Z
ig

B
e

e

S
y
s
te

m

fa

ilu
re

S
o

ft
w

a
re

 f
a

ilu
re

H
a

rd
w

a
re

S

o
ft
w

a
re

F
P

G
A

D
a

ta
b

a
s
e

Z
ig

B
e

e

Fig. 36.7 – Fault tree model of BAS components

H
a

rd
w

a
re

 f
a

ilu
re

F
IH

E
F

IH

S
e

c
u

ri
ty

A
h

w

R
e

c
/s

o
ft
w

a
re

F
IS

F
IS

E

A
s
w

F
IS

F
IS

E

A
s
w

F
IS

F
IS

E

S
e

c
u

ri
ty

R
e

c
/s

o
ft
w

a
re

A
s
w

S
y
s
te

m

fa

ilu
re

S
o

ft
w

a
re

 f
a

ilu
re

F
P

G
A

D
a

ta
b

a
s
e

Z
ig

B
e

e
F

P
G

A

H
a

rd
w

a
re

S

o
ft
w

a
re

Fig. 36.8 – Attack tree model of BAS components

F
P

H
F

P
H

E
F

M
H

R
e

li
a

b
il
it
y

R
e

c
/

h
a

rd
w

a
re

H
a

rd
w

a
re

 f
a

il
u

re

F
P

H
F

P
H

E
F

M
H

F
P

H
F

P
H

E
F

D
S

F
D

S
E

F
A

S

R
e

li
a

b
il
it
y

R
e

c
/

h
a

rd
w

a
re

F
D

S
F

D
S

E
F

A
S

F
D

S
F

D
S

E
F

A
S

F
P

G
A

D
a

ta
b

a
s
e

Z
ig

B
e

e

S
y
s
te

m

fa

il
u

re

S
o

ft
w

a
re

 f
a

il
u

re

F
P

G
A

D
a

ta
b

a
s
e

Z
ig

B
e

e

F
IH

E
F

IH

S
e

c
u

ri
ty

A
h

w

R
e

c
/s

o
ft
w

a
re

F
IS

F
IS

E

A
s
w

F
IS

F
IS

E

A
s
w

F
IS

F
IS

E

S
e

c
u

ri
ty

R
e

c
/s

o
ft
w

a
re

A
s
w

F
P

G
A

D
a

ta
b

a
s
e

Z
ig

B
e

e
F

P
G

A

H
a

rd
w

a
re

S

o
ft
w

a
re

Fig. 36.9 – Availability tree model of BAS components

36.4 Scaling of models for assessing the reliability and cyber

security of smart building I&C systems

The project of intellectualization of the university campus

buildings presented in Fig. 36.10 provides the installation of sensors

and actuators in buildings of different categories. In ordinary residential

buildings, the elements of the low-level intelligent building systems

linked to the BAS are located, the control level of which is located in a

separate data center. The data center is located within the reach of the

local network of the communication level. Thus, each zone, denoted as

"Arean" in Fig. 36.10, due to ensuring the requirements for autonomy

of functioning, is considered as a BAS of the first level (Level 1),

which is shown in Fig. 36.10. The administrative building in the "Area

1" zone also has intelligent systems, as well as the servers on which the

private cloud is deployed (Private Cloud). This cloud provides a

management level over the entire campus. To communicate with the

cloud, other zones use the resources of the Internet, because the

distances between them cannot be limited to the use of the local

network.

Building 1

Main building

Building 2

Building 3

Building 1 Building 2

Building 3

Data center 1
Data center 2

Level 1 Level 1

Level 2

Level 2

Automation

level
Communication

level

Management

level

Automation

level Communication

level

Management

level

Private- cloud servicesManagement level

Communication level

Automation level

Area 1

Area 2 Area 3

Internet

connection

Fig. 36.10 – Design of the architecture of the intellectualization system

for the smart university campus

Thus, when scaling tree models of failures and attacks on the

university campus according to Fig. 36.10, three levels of architecture

are also pointed out. At the management level, Private Cloud servers

deployed in the administrative building are considered. The

communication level unites all Internet connections between cloud

servers and the BAS residential buildings. The automation level is

associated with the BAS of residential buildings of the first level.

Failure area 2 Failure area 3
Failure cloud

service area 1

 Failure Internet

connection

Failure system

Security

Fig. 36.11 – The tree of attacks (АТА) on components of the university

campus intellectual system

When constructing an Attack Tree model for the university

campus systems (Fig. 36.11), generalized indicators of the non-failure

operating probability of individual zones, cloud servers and the

communication level are considered. The last two NOPs were identified

in [13,14], and the NOP of the BAS level is determined by the

previously developed models of cyber security (Fig. 36.8). The Attack

Tree of the university campus is constructed using assumptions about

the impossibility of hacking the whole system only by attacking one of

the BASs of the first level. This means that attackers in order to transfer

the entire system to the failure mode must either crack both BASs of

the first level at the same time, or disrupt the cyber security in

communication and management levels.

F
a
il

u
re

 a
re

a
 2

F

a
il

u
re

 a
re

a
 3

F

a
il

u
re

 c
lo

u
d

se
rv

ic
e

a
re

a
 1

 F

a
il

u
re

 I
n

te
rn

et
 c

o
n

n
ec

ti
o
n

F
a
il

u
re

 a
re

a
 2

F

a
il

u
re

 a
re

a
 3

F

a
il

u
re

 c
lo

u
d

se
rv

ic
e

a
re

a
 1

 F

a
il

u
re

 I
n

te
rn

et
 c

o
n

n
ec

ti
o
n

R
ec

o
v
er

y
/

F
T

A

R
ec

o
v
er

y
/

A
T

A

S
y
st

em
 f

a
il

u
re

S
ec

u
ri

ty

R
el

ia
b

il
it

y

F
T

A
A

T
A

Fig. 36.12 – The tree of fault ant attacks (АvТА) on components of the

university campus intellectual system

The Fault Tree model of the university campus intellectual system

(Fig. 36.13) also considers the generalized non-failure operating

probability indicators of the BAS level obtained with the help of

previously developed FTA-models (Fig. 36.7). NOPs of cloud servers

and the level of communication were defined in [15]. Due to the

autonomy of the operation of systems in different zones, a system-wide

failure occurs only if the BASs of these zones simultaneously

shutdown, or if the communication level is damaged.

Failure area 2 Failure area 3
Failure cloud

service area 1

 Failure Internet

connection

System failure

Reliability

Fig. 36.13 – Fault tree (FТА) model for components of the university

campus intellectual systems

Table 36.5 shows the results of calculations of the NOPs for the

intellectual system of the university campus, and the AvTA model of

the campus is presented in Fig. 36.12.

Table 36.5 – Calculation of the NOP for I&Cs of the smart building

according to indicators of reliability and cyber security

Type

of
Issues Parameters Probability

Tree
F

T
A

R
el

ia
b
il

it
y
 Failure area 2 0.0012

S
y
st

em
 p

ro
b
ab

il
it

y
 t

o
 f

ai
lu

re

w
it

h
 r

ec
o
v
er

y
=

0
.0

0
6
1
8
7
3
2
4

S
y
st

em
 p

ro
b
ab

il
it

y
 t

o
 f

ai
lu

re

w
it

h
o
u
t

re
co

v
er

y
=

0
.0

1
1
1
3
9
6
4
8

Failure area 3 0.002

Failure – cloud services –area 1 0.25

Failure Internet connection 0.0021

Recovery /FTA 0.8

A
T

A

S
ec

u
ri

ty

Failure area 2 0.005

Failure area 3 0.015

Failure – cloud services –area 1 0.0025

Failure Internet connection 0.0065

Recovery /ATA 0.5

According results of calculations, it is possible to draw a

conclusion that accounting factors of recovery and blocking of attacks

allows to specify the importance of NOP value for the intellectual

system of the university campus by an order of magnitude.

36.5 Development of a conceptual model for the I&Cs

functioning of the smart building taking into account recovery

and maintenance

In general, the BAS conceptual model should cover a full set of

reasons for system shutdown [16]. At the same time, the dimension and

complexity of the model cause the search for ways of its decomposition

into smaller models describing the mutually independent causes of

failures. Thus, for models of hardware and software failures, it is

possible to construct both a generalized model and two separate

availability models with the subsequent multiplication of their resulting

availability coefficients (or functions).

2

7

3 4 5 6

8 9 10

�PH

 PH

� PHr

 PHr � PHc

 PHc

�INS

 INS

�INSc

 INSc

�SD

 SD

�SDc

 SDc

�INSD

 INSD

�INSDc

 INSDc

Hardware

Software

Security Reliability

1

Fig. 36.14 – Conceptual scheme for constructing the general model of

BAS functioning taking into account two groups of failure causes

The general concept of building a model with two groups of failure

causes (subsets of reliability and cyber security) is presented in

Fig. 36.14. The upper level is occupied by the initial working state of

the S1 system. The level below is a subset of the hardware states – the

group of states S2 ... S6 caused by the manifestations of the faults in

hardware. The lower part of the Fig. shows the subset of the states of

the software tools S7 ... S10. Under the condition of changing the

parameters of manifestation defects in design and interaction

(intrusions), the model will expand in the direction of four vectors from

states S4, S6, S8, S10, to final states in which the parameter change stops.

Causes and events, which change the parameters of the manifestation of

design faults, are described in detail in [17]. Explanations to the

definition of the input parameters of the conceptual model are given in

Table 36.6.

Table 36.6 – Input parameters of the conceptual model for the I&CS of

the smart building

Parameter

notation

Detailed description of the input parameter

λPH Physical operation failure (hardware)

µPH Physical operation failure (hardware/repair)

λPHr Physical failure operation (soft error)

µPHr Physical operation failure (soft hardware

error/restart)

λPHc Physical manufacture failure (hardware)

µPHc Manufacture failure (hardware/changing design)

λINS Intrusion failure (soft hardware vulnerability)

µINS Intrusion failure (soft hardware vulnerability

/restart)

λINSc Intrusion failure (severe hardware vulnerability)

µINSc Intrusion failure (severe hardware

vulnerability/changing design)

λSD Failure caused by design fault (software)

µSD Soft error caused by design fault

(software/restart)

λSDc Failure caused by design fault (software)

µSDc Failure caused by design fault

(software/changing code)

λINSD Intrusion failure (soft software vulnerability)

µINSD Intrusion failure (soft software

vulnerability/restart)

λINSDc Intrusion failure (severe software vulnerability)

µINSDc Intrusion failure (severe software

vulnerability/changing code)

The logic of the mechanisms for changing the parameters of

attacks on the vulnerabilities of the BAS architecture component is as

follows. Initially, at the time of putting the system into operation, it

contains some set of component vulnerabilities. At the same time, this

set contains vulnerabilities known from records in open repositories as

well as the so-called "zero day" vulnerabilities (about which there is no

information in open repositories).

In the process of functioning, the following events that affect the

change in the number of vulnerabilities in the system can take place:

- elimination of single vulnerabilities (both open and "zero day")

after attacks of intruders;

- elimination of single vulnerabilities (both open and "zero day")

after their detection by users;

- elimination of a group of open vulnerabilities resulting from

cyber security maintenance procedures;

- introduction of new vulnerabilities as a result of BAS

reconfiguration or software updating.

Fig. 36.15 graphically shows how to resolve single (a) and group

(b) vulnerabilities of BAS components.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Reliability issue

 security issue

Reliability issue

 security issue

Reliability issue

 security issue

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Reliability issue

Security issue

Reliability issue

 Security issue

Reliability issue

 Security issue

a)

b)

Fig. 36.15 – Dynamics of change in the BAS conceptual model when

performing security maintenance procedures with elimination of single

(a) and group (b) vulnerabilities

In the interest of further research, it is assumed that the number of

failure causes is limited to two subgroups: software defects due to

design errors and attacks on software component vulnerabilities. Taking

into account such an assumption, the dimension of the conceptual

model decreases, as shown in Fig. 36.16, a. Fig. 36.16, b shows a

Markov graph of the conceptual model, taking into account the second

assumption about the sequential manifestation of defects and attacks on

vulnerabilities. In addition, it is assumed that a defect or vulnerability

will be eliminated with probabilities PR (PS).

1

2

3 5

4
�PH

 PH

�SD SD

�SDc

 SDc

�INSDc

 INSDc

Security

Reliability

F(ND,NV)

F(ND,NV-1)

F(ND-1,NV)

F(ND-1,NV-1)

�I1(NV)

�D1(ND)

PS* I1

PR* D1
�I1(NV)

�D1(ND)

PR* D1

PS* I1

(1-PS)* IF1

(1-PS)* IF1

(1-PR)* DH1

(1-PR)* DH1

R
eliability

Sec
uri

ty

a) b)

Fig. 36.16 – A simplified graph of the BAS conceptual model (a) and

with consideration of the PR (PS) probabilities to eliminate defects and

vulnerabilities (b)

In the future, when modeling a system with a number of defects

and vulnerabilities more than 1, the dimension of the graph shown in

Fig. 36.16, b will increase, but the depicted lozenge will remain the

reference fragment of the BAS model.

Conclusions

The chapter presents the existed techniques and conceptual

approaches to assessing the reliability and cybersecurity of information

and control systems using models in the form of fault and Attack Trees

as well as graph models of states and transitions.

The reliability and cyber-security models BASs using AND-OR

trees for analysis of failures and attacks has been described. This

allowed taking into account the influence of faults and vulnerabilities of

BAS components on the probability of failure.

The Attack Tree models for the BAS components and for the

system as a whole are considered as well as Fault Tree Models and

combined failure and attack models (AvTA), which allow considering

the recovery of operability and blocking of attacks.

From the practical point of view, described models and techniques

are important as allowing choice a non-maintenance BAS component,

and develop more detailed requirements and techniques for assessing

the reliability and cyber security.

Questions to self-checking

1. Please describe the main components of Building automation

system (BAS) architecture.

2. Which are the main differences between Attack Tree Analysis

(ATA), Fault Tree Analysis (FTA) and Availability Tree Analysis

(AvTA)?

3. Which are typical vulnerabilities of FPGA devices?

4. Which are typical vulnerabilities in databases?

5. Which are typical vulnerabilities in wireless communications?

6. Which are probable scenarios of cyber-attacks and their

consequences for BAS states?

7. Please, describe the main procedures of FMECA and FTA

technologies

8. Please, describe the main issues of IMECA and ATA

technologies

9. Which are the main steps of modeling of BAS architecture

components by use of the ATA?

10. Which states are possible in conceptual model for the BASs

functioning taking into account strategies of recovery and maintenance?

References

1. Farooq, Umer, Marrakchi, Zied, Mehrez, Habib. Tree-Based

Heterogeneous FPGA Architectures – New York Springer

Science+Business Media. 2012. 188 p.

2. Rie Higuchi. Building automation and control systems. The

United Kingdom. A multi client study – BSRIA Limited Old Bracknell

Lane West, Bracknell, 2013. – 203 p.

3. Hatambeiki, A. Wireless Network Security – San Francisco,

California, 2004. – 132 p.

4. D. Nagamalai, B. Dhinakaran, P. Sasikala, S. Lee and J. Lee,

Security Threats and Countermeasures in WLAN, – Technologies for

Advanced Heterogeneous Networks. AINTEC 2005. Lecture Notes in

Computer Science, – vol 3837, – pp. 168-182, – 2005, doi:

10.1007/11599593_13.

5. Vishali R. Security in Wireless Local Area Networks. –

International Journal of Computer Science and Information Technology

Research. – 2014. – Vol.2, Issue 2. – P. 472-483.

6. K. Scarfone, D. Dicoi, M. Sexton and C. Tibbs, Guide to

securing legacy IEEE 802.11 wireless networks, – NIST Special

Publication 800-48, – 2008, doi: 10.6028/NIST.SP.800-48r1.

7. R. Jain, Wireless LAN Security II: WEP Attacks, WPA and

WPA2, –Washington: University in Saint Louis, – 2009. – 33 p.

8. Mustafa Qahtan Abdulmunem Al-Sudani, V. S. Kharchenko,

D. D. Uzun. Vulnerability analysis of wireless networks: case for smart

building automation system – Radioelectronic and computer systems. -

2015. – Vol. 2. - P. 69–76.

9. Kharchenko V., Ponochovnyi Y., Abdulmunem AS.M.Q.,

Andrashov A. Availability Models and Maintenance Strategies for

Smart Building Automation Systems Considering Attacks on

Component Vulnerabilities. – Advances in Intelligent Systems and

Computing, Vol. 582, 2017, P. 186-195. DOI: 10.1007/978-3-319-

59415-6_18

10. Technical manual. TM 5-698-4, Failure Modes, Effects and

Criticality Analyses (FMECA) for Command, Control,

Communications, Computer, Intelligence, Surveillance, and

Reconnaissance (C4ISR) Facilities. – Department of the Army

Washington, DC, imp. 29 September 2006. – 75 p.

11. X. Cheng, Z. Xing, Y. Qin, Y. Zhang, S. Pang and J. Xia,

Reliability Analysis of Metro Door System Based on FMECA, –Journal

of Intelligent Learning Systems and Applications, – vol. 05, no. 04, –

pp. 216-220, – 2013, doi: 10.4236/jilsa.2013.54024

12. E. Babeshko, V. Kharchenko and A. Gorbenko, Applying

F(I)MEA-technique for SCADA-Based Industrial Control Systems

Dependability Assessment and Ensuring, – 2008 Third International

Conference on Dependability of Computer Systems DepCoS-

RELCOMEX, Szklarska Poreba, – pp. 309-315, – 2008. doi:

10.1109/DepCoS-RELCOMEX.2008.23.

13. T. Novak and A. Treytl, “Functional safety and system

security in automation systems - a life cycle model”, – In 2008 IEEE

International Conference on Emerging Technologies and Factory

Automation, Hamburg, – pp. 311-318, – 2008, doi:

10.1109/ETFA.2008.4638412.

14. Feruza Sattarova, Y. Tao-hoon Kim, IT Security Review:

Privacy, Protection, Access Control, Assurance and System Security, –

In International Journal of Multimedia and Ubiquitous Engineering, –

Vol. 2, No. 2, – pp. 17-31, – 2007.

15. Q. Yu and R. J. Johnson, Smart grid communications

equipment: EMI, safety, and environmental compliance testing

considerations, – Bell Labs Technical Journal, – vol. 16, no. 3, pp. 109-

131, – Dec. 2011, doi: 10.1002/bltj.20525

16. K. S. Trivedi, D. S.fdc Kim, A. Roy and D. Medhi,

Dependability and security models, – 7th International Workshop on

Design of Reliable Communication Networks, – Washington, DC, – pp.

11-20, – 2009. doi: 10.1109/DRCN.2009.5340029.

17. B. Joshi, D. Pradhan and S. Mohanty, Fault Tolerant

Nanocomputing, – Lecture Notes in Electrical Engineering, – pp. 7-27,

– 2010, doi: 10.1007/978-90-481-8540-5_2.

ПЕРЕЧЕНЬ СОКРАЩЕНИЙ К РАЗДЕЛУ 36

AP – Access point

ATA – Attack Tree Analysis

AvTA – Availability Tree Analysis

BAS – Building automation system

DB – Database

DBMS – Database management system

DoS – Denial of service

EAP – Extensible Authentication Protocol

FMEA – Failure Modes and Effects Analysis

FMECA – Failure Modes, Effects and Criticality Analysis

FPGA – Field-programmable gate array

FTA – Fault Tree Analysis

I&CS – Information and control systems

IMECA – Intrusion Modes, Effects and Criticality Analysis

IPS – Intrusion Prevention System

NOP – Non-failure operating probability

PC – Personal Computer

АННОТАЦИЯ

В разделе представлены модели надежности и

кибербезопасности информационно-управляющих систем умных

домов с использованием И-ИЛИ деревьев анализа отказов и атак

учитывающих влияние дефектов и уязвимостей различных

компонент их архитектуры и параметров процессов

восстановления работоспособности и блокировки атак,

позволяющих рассчитать вероятности отказа систем. Учет

надежности и кибербезопасности позволяет расширить перечень

причин отказов и слабых мест системы в рамках единой

концепции гарантоспособности. По направлению надежности

анализируются аппаратные и программные дефекты, а также

дефекты взаимодействия вследствие ошибок обслуживающего

персонала. По аспектом кибербезопасности анализируются

уязвимости программных средств, троянские программы и

бэкдоры.

У розділі представлені моделі надійності та кібербезпеки

інформаційно-керуючих систем розумних будинків з

використанням ТА-АБО дерев аналізу відмов і атак шляхом

урахування впливу дефектів і вразливостей різних компонент їх

архітектури і параметрів процесів відновлення працездатності і

блокування атак, що дозволяє розрахувати ймовірності відмови

систем. Врахування позицій надійності та кібербезпеки дозволяє

розширити перелік причин відмов та слабких місць системи в

рамках єдиної концепції гарантоздатності. За напрямком

надійності аналізуються апаратні та програмні дефекти, а також

дефекти взаємодії внаслідок помилок обслуговуючого персоналу.

За аспектом кібербезпеки аналізуються вразливості програмних

засобів, троянські програми та бекдори.

Building automation systems models as failure and attack tree and

states graph are discussed in the section. The further development was

given to the reliability and cyber security model of information and

control systems of smart buildings using AND-OR trees of faults and

attacks analysis by taking into account the influence of the defects and

vulnerabilities of various components of their architecture and the

parameters of the processes of recovery and blocking of attacks, which

allows to calculate the probability of failure of the system.

Consideration of the reliability and cyber security positions allows to

expand the list of causes of failures and weaknesses in the system

within the framework of a single concept of dependability. Hardware

and software defects as well as defects in interaction due to operating

personnel errors and attacks on the system are analyzed in the direction

of reliability. The cyber security aspect analyzes vulnerabilities in

software, Trojan programs and backdoors.

37 ASSESSMENT OF SMART BUILDING

AUTOMATION SYSTEMS AVAILABILITY AND

SECURITY CONSIDERING MAINTENANCE

STRATEGY

Modification of software tools of different architecture levels of

the smart building BAS due to the elimination of design defects and

patching of vulnerabilities leads to a change in the parameters of the

failure and recovery flows of the system. As it was shown in the

previous Chapters, it is preferable to use the apparatus of Markov and

semi-Markov processes to study systems with variable parameters

[1,2]. In [3], a systematic approach to the construction of multi

fragment models is developed, and in [4], models that take into account

reliability and security factors for web systems have been developed.

However, in known studies, the influence of different maintenance

strategies concerning these factors has not been investigated.

Thus, it is necessary to choose a more acceptable approach for

constructing Markov models of BAS availability for common and

separate maintenance, taking into account the gradual elimination of

software defects and vulnerabilities.

37.1 Formalization of mathematical models for availability of

intelligent building I&CS

When studying planning and maintenance procedures of BAS

architecture software components, an important step is to obtain

quantitative values of the probabilistic components of their availability.

The use of the Markov modeling apparatus is associated with a certain

set of constraints, which does not allow to construct and apply a single

unified model. The output is the construction of a complex of models,

in which each model allows to obtain similar result indicators, which

are convenient for making comparisons and searching for optimal

solutions.

The main aspect of modeling the functioning of BAS architecture

software components is accounting for the manifestation and

elimination of limited sets of software defects and vulnerabilities, and

these sets are considered as non-overlapping.

The second aspect is maintenance, in the course of which it is

possible to identify and eliminate both defects and vulnerabilities.

Maintenance procedures can be carried out throughout the BAS

lifecycle, or be limited to a certain number of procedures.

The third aspect is the composition of maintenance activities: they

can be aimed only at identifying software defects, or only to identify

vulnerabilities, or contain a common set of measures to identify both

defects and vulnerabilities. A set of basic models is systematized in

Table 37.1.

Table 37.1 – Characteristics of the classification for availability models

for smart building I&CS

General

characteristics

of the model

Model specification
Conventional

notions

А) Base model

without

maintenance

-the number of defects 0..Nd

- the number of vulnerabilities

0..Nv

- the number of maintenances 0

MBAS1

B) Model with

common

maintenance

- the number of defects 0..Nd

- the number of vulnerabilities

0..Nv

- the number of maintenances:

unlimited during the system

whole life cycle

- type of maintenance: common

MBAS2.1

- the number of defects 0..Nd

- the number of vulnerabilities

0..Nv

- the number of maintenances:

0..Np

- type of maintenances: common

MBAS2.2

C) Model with

separate

- the number of defects 0..Nd

- the number of vulnerabilities

MBAS3.1

maintenance 0..Nv

- the number of maintenances:

unlimited during the system

whole life cycle

- type of service: separate

- the number of defects 0..Nd

- the number of vulnerabilities

0..Nv

- the number of maintenances by

defects 0..Ndp,

- the number of maintenances by

vulnerabilities 0..Ndv

- type of service: separate

MBAS3.2

The time intervals for conducting common and separate

maintenances include the periods of testing, elimination of detected

defects and vulnerabilities, and verification of the modified software.

The procedures for finding defects and vulnerabilities differ both in

composition and in duration, and their completeness determines the

corresponding probabilities of PCS and PCR.

37.2 Models for availability of information and control systems

in smart buildings taking into account reliability and safety

procedures

37.2.1 Basic model of availability of BAS architecture taking

into account software defects and vulnerabilities (MBAS1)

The basic model describes the processes of manifestation and

elimination of software defects and vulnerabilities as separate flows of

random events. The initial number of defects (Nd) and vulnerabilities

(Nv) are the input parameters of the model. In addition, the input

parameters are intensities of random event flows common for all

Markov models. In the thesis, an example of the BAS architecture is

considered, which at the time of putting into operation contains two

software defects and two vulnerabilities. Fig. 37.1 shows its marked

graph.

The main assumptions are those about the simplest failure and

recovery flows that change the state of the system. After the

manifestation of a defect (or vulnerability), the system with the

probability PR (PS) stops working until they are completely eliminated.

With the probability 1-PR (for defects) or 1-PS (for vulnerabilities) the

system returns to the previous operable state through restart of the

program. In the course of elimination, new defects and vulnerabilities

are not introduced. As defects and vulnerabilities occur, they are

gradually eliminated. In the particular case of BAS functioning after the

defect or vulnerability manifestations, the system stops until they are

completely eliminated (i.e., PR = 1 and PS = 1).

The operable states in Fig. 37.1 are shown in large circles with the

number of defects and vulnerabilities in them; Inoperable states are

shown in small circles without signatures. In the initial state F(Nd, Nv),

the system contains 2 software defects and 2 vulnerabilities.

The manifestation of software defects on the graph is illustrated by

diagonal transitions with a downward shift (weighted intensities

λDi(Nd)), and vulnerabilities – by diagonal transitions with upward

shift (weighted intensities λIj(Nv)). After the manifestation of

vulnerabilities, they are eliminated with intensities PS*μIj, respectively;

the elimination of software defects is performed with PR*μDi

intensities. After all defects and vulnerabilities have been removed, the

system goes to the F(0,0) state.

The software restart is illustrated by transitions from inoperable

states, weighted intensities (1-PR)*μDHi and (1-PS)*μIFi.

The marked state graph and transitions (Fig. 37.2), which includes

an endless numbering of states, was constructed using the modified

function grPlot_marker. The Kolmogorov SDE is constructed

according to the graph of MBAS1 is as follows:

F(ND,NV)

F(ND,NV-1)

F(ND-1,NV)

F(ND-1,NV-1)

F(ND,NV-2)

F(ND-2,NV)

F(ND-1,0)

F(0,NV-1)

F(0,0)

PR*�D1

 I1(NV)

 I2(NV)

 D1(ND)

 D2(ND)

 I1(NV)

 I2(NV)

 D1(ND)

 D2(ND)

PR*�D2

PS*�I1

PS*�I2

PS*�I1

PR*�D1

PR*�D2

 I1(NV)

 D1(ND)

PR*�D1

 D2(ND)

 I2(NV)

PR*�D2

PS*�I2

F(ND,NV) Operable state

Inoperable state

PS*�I1

PS*�I2

(1-PS)*�IF1

(1-PS)*�IF2

(1-PS)*�IF1

(1-PS)*�IF1

(1-PS)*�IF2

(1-PS)*�IF2

(1-PR)*�DH1

(1-PR)*�DH1

(1-PR)*�DH1

(1-PR)*�DH2

(1-PR)*�DH2

(1-PR)*�DH2

Fig. 37.1 – Marked graph of the base model MBAS1 taking into

account the manifestation and elimination of software defects and

vulnerabilities (without numbering of states)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14 15

16

17

18

19

20

Fig. 37.2 – Marked orgraph of the base model MBAS1 with the

numbering of states, built using grPlot_marker

             

           

   

         

           

   

0 1 1 0 1 9 1 15

1 2 1 1 1 9 2 10

1 16

2 1 2 2 10 1 17

3 1 2 3 1 11 1 15

2 18

4

/ 1 1 ,

/ 1

1 ,

/ 1 ,

/ 1

1 ,

dP t dt I D P t PS IF P t PR DH P t

dP t dt I D P t PS I P t PS IF P t

PR DH P t

dP t dt D P t PS I P t PR DH P t

dP t dt I D P t PS IF P t PR D P t

PR DH P t

dP

   

   



  

   



      

      

 

    

      

 

           

     

           

         

           

2 2 4 1 11 2 12

1 16 2 19

5 2 5 2 12 1 17 2 20

6 1 6 1 13 2 18

7 2 7 1 13 2 14 2 19

/ 1

1 ,

/ 1 ,

/ 1 ,

/ 1

t dt I D P t PS I P t PS IF P t

PR D P t PR DH P t

dP t dt D P t PS I P t PR D P t PR DH P t

dP t dt I P t PS IF P t PR D P t

dP t dt I P t PS I P t PS IF P t PR D P t

   

 

   

  

   

      

  

     

    

     

     

        

        

        

        

      

8 2 14 2 20

9 1 1 9 1 0

10 2 2 10 2 1

11 1 1 11 1 3

12 2 2 12 2 4

13 1 1 13

,

/ ,

/ 1 ,

/ 1 ,

/ 1 ,

/ 1 ,

/ 1

dP t dt PS I P t PR D P t

dP t dt PS IF PS I P t I P t

dP t dt PS IF PS I P t I P t

dP t dt PS IF PS I P t I P t

dP t dt PS IF PS I P t I P t

dP t dt PS IF PS I P t

 

  

  

  

  

 

 

    

    

    

    

      

        

        

        

        

        

 

1 5

14 2 2 14 2 6

15 1 1 15 1 0

16 2 2 16 2 1

17 1 1 17 1 2

18 2 2 18 2 3

19

,

/ 1 ,

/ 1 ,

/ 1 ,

/ 1 ,

/ 1 ,

/ 1

I P t

dP t dt PS IF PS I P t I P t

dP t dt PR DH PR D P t D P t

dP t dt PR DH PR D P t D P t

dP t dt PR DH PR D P t D P t

dP t dt PR DH PR D P t D P t

dP t dt P



  

  

  

  

  

    

    

    

    

    

        

        

 

   

1 1 19 1 4

20 2 2 20 2 5

20

0

0

,

/ 1 ,

1;

0 1; [1..20] 0 0.

i

i

i

R DH PR D P t D P t

dP t dt PR DH PR D P t D P t

P t

P i P

  

  























































  

     






    



 (37.1)

Table 37.2 – Input parameter values of the MBAS1 model

Name
Mathlab-

name

Time

interval
Value

Measur.

Unit

1.

The intensity of the first

software defect manifestation

λD1

laR(1)
5,45

years
5e-4 1/hour

2.

The intensity of the second

software defect manifestation

λD2

laR(2)
6,09

years
4.5e-4 1/hour

3.

The intensity of the first

software vulnerability

manifestation λI1

laS(1)
0,91

year
3e-3 1/hour

4.

The intensity of the second

software vulnerability

manifestation λI2

laS(2)
0,78

year
3.5e-3 1/hour

5.

The intensity of recovery with

elimination of the first software

defect μD1

muR(1) 2 hours 0.5 1/hour

6.

The intensity of recovery with

elimination of the second

software defect μD1

muR(2)
2,5

hours
0.4 1/hour

7.

The intensity of recovery with

elimination of the first software

vulnerability μI1

muS(1)
2,22

hours
0.45 1/hour

8.

The intensity of recovery with

elimination of the second

software vulnerability μI2

muS(2)
2,94

hours
0.34 1/hour

9.

The intensity of the restart

without elimination of software

defects μDH1= μDH2

muRH
12

minutes
5 1/hour

10.

The intensity of the restart

without elimination of software

vulnerabilities μIF1= μIF2

muSF
10

minutes
6 1/hour

11.

The probability of the software

defect elimination during

recovery

PR 0.9

12.

The probability of the software

vulnerability elimination during

recovery

PS 0.9

13.
The number of software defects

in the system
Nd 2

14.
The number of software

vulnerabilities in the system
Nv 2

To solve the SDE, the method ode15s was used in the Matlab

system for the time interval of [0 ... 50000] hours. To construct the

matrix of the Kolmogorov-Chapman system of differential equations,

we use the matrixA function [4]. To solve the system of differential

equations, the built-in solver Matlab ode15s is used. The availability

function is defined as:

   
(Nd+1) (Nv+1)-1

0

i

i

A t P t




 
. (37.2)

The results of the simulation are shown in Fig.37.3. The graph of

the model has the following character of the change in the availability

function. At the first stage, the availability of the system is reduced to

the minimum, and then it asymptotically tends to the established value.

Fig. 37.3 – Results of modeling the availability of the BAS architecture

(the resulting indicators are determined with the error of 10
-5

)

Thus, with further analysis of the results, it is necessary to take

into account three parameters:

- the minimum value of the availability function AMBAS 1min= 0;

- the value of the availability function in the steady state

AMBAS 1const= 1;

- the time interval for the transition of the availability function to

the steady stateTMBAS 1const=28117 hours.

In a system without maintenance and provided absence of defects

and vulnerabilities, availability asymptotically tends to 1. Therefore, it

is of further interest to investigate the impact of individual parameters

on the values of the availability function at the minimum point and the

time interval for the transition of the availability function to the steady

state. For the MBAS1 model, the following parameters were selected

(Table 37.3):

Table 37.3 – The boundaries of the variable values of the input data of

MBAS1

Name
Mathlab-

name

Value

row

Measuring

unit

The number of software vulnerabilities in

the system
Nv [0..4]

The probability of the software defect

elimination during recovery
PR [0..1]

The restart intensity without elimination

of software vulnerabilities
muSF [4..10]

1/hour

The results of modeling in the form of graphical dependencies are

shown in Fig.37.4-Fig.37.6.

a) b)

Fig. 37.4 – Graphs of changing the MBAS1 availability model for

different numbers of vulnerabilities Nv: (a) – with λI = var, μI = var;

(b) with λI=const, μI=const

The graphs in Fig.37.4 clearly illustrate the behavior of the

availability function with different number of vulnerabilities.

Obviously, in a system with a large number of vulnerabilities, the latter

will be eliminated with a longer time interval. But due to the presence

of processes of software defect manifestation and elimination (which is

illustrated by the curve with Nv = 0), the period of transition of the

availability function to the steady state for systems with different

number of vulnerabilities remained at the level of TMBAS 1const=28117

hours. Fig.37.4 (a) illustrates the dependence of the minimum of the

availability function on the parameter Nv, but this dependence is of an

indirect nature, since the increase in Nv contributes to the dynamics of

the parameters λI and μI. For the purity of the experiment, additional

studies were carried out, during which the parameters λI and μI did not

change with the increase in the number of Nv vulnerabilities. The result

is shown in Fig.37.4 (b), and it is well illustrated that with the growth of

Nv, the minimum of the availability function does not change

(AMBAS 1min= 0.9965).

a) b)

Fig. 37.5 – Two- (a) and three-dimensional (b) graphs of the change in

the availability function of the MBAS1 model for different values of

the probability of eliminating the software defect during recovery

The analysis of the graphs in Fig. 37.5 (a) showed that with the

growth of the parameter PR, the process of transition of the availability

function to the steady state is accelerated. It is also obvious that when

PR = 0, the availability function will never reach a single value (A(t)=1

under t-> ∞), since instead of eliminating the defects of the software,

the system will be continuously restarted. The three-dimensional graph

in Fig. 37.5 (b) gives more visualization of the availability function

behavior depending on the PR parameter. The dependence of the

minimum of the availability function on the PR parameter is clearly

visible: at PR = 1, the value of AMBAS 1min= 0.996; with a decrease of

PR to zero the value of AMBAS 1min asymptotically tends to

AMBAS 1min=0,9969.

The analysis of the graph in Fig. 37.6 (b) showed that the value of

the muSF parameter (the intensity of the system restart after the

manifestation of the vulnerability in the software) will depend on the

minimum of the availability function, at muSF = 10 (1/hour)

AMBAS 1min=0.9974; and under muSF = 4 (1/hour) AMBAS 1min=0.9957.

This dependence is non-linear, which is well illustrated by the three-

dimensional graph. The two-dimensional graphs in Fig. 37.6 (a) show

that the parameter muSF does not affect the rate of transition of the

availability function to the steady state. This is due to the influence of

manifestation and elimination processes of software defects.

a) b)

Fig. 37.6 – Two- (a) and three-dimensional (b) graphs of the change in

the availability function of the MBAS1 model at different values of the

restart intensity without eliminating software vulnerabilities

37.2.2 The BAS availability model taking into account common

service (MBAS2.1)

This model is an extension of the basic one and includes additional

states that allow modeling of the maintenance procedures. The marked

graph of the model is shown in Fig. 37.7. When constructing the graph

of the model, to increase the visibility it was assumed that the defect or

vulnerability was completely eliminated without restarting the system

(i.e., PR = PS = 1). However, this assumption concerns only the graphic

image in Fig. 37.7 (a); Fig. 37.7 (b); and the subsequent simulation

results take into account the restart of the system. In addition to the

assumptions listed above, the MBAS2 model assumes that during the

common maintenance, it is possible to detect and eliminate one

software defect or one vulnerability.

The states simulating common maintenance procedures are shown

by shaded circles. The transitions to maintenance states are performed

from operational states with a maintenance rate λMj. In the process of

maintenance activities, the detection of a software defect occurs with

the PCR probability, the detection of vulnerability – with the PCS

probability. Simultaneous detection of the software vulnerability and

defect occurs with the probability of PCR*PCS. The probability of PF

undetectable defects and vulnerabilities complements previous events

to the full group:

 PF+PCS+PCR+PCS*PCR=1. (37.3)

Thus, four transitions are possible from the maintenance state:

a) if a vulnerability with a PCS probability is detected, a vertical

upward transition is performed, weighted by the PCS*μMs intensity,

where μMs is the inverse of the mean detection time and elimination of

the vulnerability [5], μMs = 1 / (TdetV + TremV);

b) in case of detection of a software defect with a PCR probability,

a vertical downward transition is performed, weighted by the intensity

of PCR*μMr, where μMr is the inverse value of the mean detection

time and elimination of the defect [6], μMr = 1 / (TdetD + TremD);

c) in case of detection of a software defect and a vulnerability with

a PCS*PCR probability, a right-hand transition weighted by the

PCS*PCR*μMrs intensity is performed, where μMrs is the inverse of

the mean detection and elimination time of the defect and vulnerability,

Mr Ms
Mrs

Mr Ms

 


 




 ; (37.4)

d) if the defect and the vulnerability are not detected with PF

probability, a return to the previous working state (to the left) weighted

by the intensity PF*μMtis performed, where μMt is the inverse of the

average maintenance time, μMr=1/TM.

It should be noted that in this model, we consider maintenance

operations that do not anticipate the number of defects and

vulnerabilities. Therefore, after removing all vulnerabilities, the

transitions from the maintenance states simulating the defect detection

are weighted by the parameter (1-PCR)*μMt.

F(ND,NV)

F(ND,NV-1)

F(ND-1,NV)

F(ND-1,NV-1)

F(ND,NV-2)

F(ND-2,NV)

F(ND-1,0)

F(0,NV-1)

F(0,0)

 I1(NV)

 I2(NV)

 D1(ND)

 D2(ND)

�I2

�I1

�D1

�D2

PCR*�Mr

 Mj

PCS*�Ms

PF*�Mt

PCR*�Mr

PCS*�Ms

PCR*�Mr

PCS*�Ms

PCR*�Mr

 Mj

PCS*�Ms

PCR*�Mr

PCR*�Mr

 Mj

(1-PCR)*�Mt

PCS*�Ms

PCS*�Ms

 Mj

 Mj

 Mj

 Mj

PF*�Mt

PF*�Mt

PF*�Mt

 Mj

 Mj

�Mt

(1-PCR)*�Mt

(1-PCS)*�Mt

(1-PCS)*�Mt

F(ND,NV) Operable state

Inoperable state

Common

maintenance state

PCR*PCS*�Mrs

PCR*PCS*�Mrs

PCR*PCS*�Mrs

PCR*PCS*�Mrs

a)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

1415

16

17

18

19

20

21

22

23

24

25

26

27

28

29

b)

Fig. 37.7 – Marked graph of the MBAS2.1 model taking into account

common maintenance (a) and the state number orgraph constructed

using the function grPlot_marker (b)

Similarly, transitions simulating the detection of a vulnerability

after the removal of all software defects are weighted by the parameter

(1-PCS)*μMt. The extreme right state, in which maintenance of the

system without defects and vulnerabilities is simulated, has,

respectively, a transition weighted by the μMt parameter. The marked

orgraph is presented in Fig. 37.7 (b).

To construct the matrix of the Kolmogorov-Chapman system of

differential equations, we use the matrixA function [4]. The

Kolmogorov SDE solution was performed in the Matlab system using

the ode15s method for the time interval [0 ... 50000] hours. The

availability function is determined by (37.2). The results of the solution

are presented graphically in Fig. 37.8.

Table 37.4 – Values of the input parameters of the MBAS2.1 model

Name
Mathlab-

name

Time

interval
Value

Measur.

Unit

1.

The intensity of the first

software defect manifestation

λD1

laR(1)
5,45

years
5e-4 1/hour

2.

The intensity of the second

software defect manifestation

λD2

laR(2)
6,09

years

4.5e-

4
1/hour

3.

The intensity of the first

software vulnerability

manifestation λI1

laS(1)
0,91

year
3e-3 1/hour

4.

The intensity of the second

software vulnerability

manifestation λI2

laS(2)
0,78

year

3.5e-

3
1/hour

5.

The intensity of recovery with

elimination of the first

software defect μD1

muR(1) 2 hours 0.5 1/hour

6.

The intensity of recovery with

elimination of the second

software defect μD1

muR(2)
2,5

hours
0.4 1/hour

7.
The intensity of recovery with

elimination of the first
muS(1)

2,22

hours
0.45 1/hour

software vulnerability μI1

8.

The intensity of recovery with

elimination of the second

software vulnerability μI2

muS(2)
2,94

hours
0.34 1/hour

9.

The intensity of the restart

without elimination of

software defects μDH1=

μDH2

muRH
12

minutes
5 1/hour

10.

The intensity of the restart

without elimination of

software vulnerabilities μIF1=

μIF2

muSF
10

minutes
6 1/hour

11.

The probability of the software

defect elimination during

recovery

PR 0.9

12.

The probability of the software

vulnerability elimination

during recovery

PS 0.9

13.
The number of software

defects in the system
Nd 2

14.
The number of software

vulnerabilities in the system
Nv 2

15.

The intensity of maintenance

common by vulnerabilities and

defects λMj

laMj
100

hours
1e-2 1/hour

16.
The intensity of common

maintenance activities μMt
muMt

2,5

hours
0.4 1/hour

17.

The intensity of detection and

elimination of vulnerabilities

μMs

muMs 5 hours 0.2 1/hour

18.
The intensity of detection and

elimination of defects μMr
muMr

3,33

hours
0.3 1/hour

19.

The probability of

vulnerability detection during

maintenance procedures

PCS 0.4

20. The probability of software PCR 0.2

defect detection during

maintenance procedures

Fig. 37.8 – Graphs of the change in the BAS availability function

without maintenance (MBAS1) and with the common maintenance

(MBAS2.1) (the resulting indicators are determined with the error of

10
-5

)

The results of the simulation are shown in Fig. 37.8. The graphs of

the models have the same nature of the change in the availability

function. At the first stage, the availability of the system is reduced to

the minimum, then it asymptotically tends to the established value.

Thus, with further analysis of the results, it is necessary to take into

account three parameters:

- the minimum value of the availability function AMBAS imin(for the

MBAS1 model – 0.9964, for the MBAS2.1 model – 0.96194);

- the value of the availability function in the steady state

AMBAS iconst(for MBAS1 model – 1, for MBAS2.1 model – 0.97561);

- the time interval for the transition of the availability function to

the steady state TMBAS iconst(for the MBAS1 model – 28117 hours, for

the MBAS2.1 model – 3935.36 hours).

As can be seen from the graphs in Fig. 37.8, carrying out

maintenance activities reduces both the established value of the

availability function and its minimum. The MBAS2.1 model is

characterized by a desire for availability to the value determined by the

extreme right fragment:

 2.1MBAS

Mt
A const

Mj Mt



 


 , (37.5)

accordingly, the input parameters λMj and μMt will affect the value of

AMBAS 2const.

Therefore, it is of further interest to investigate the impact of

individual parameters on the values of the availability function at the

minimum point and the time interval for the transition of the

availability function to the steady state.

Given the constraint (37.2), in the MBAS2.1 model, the PCS and

PCR parameters can simultaneously assume a maximum value of √2-1

= 0.4142. Otherwise, given the time limit for services, it is possible to

"bias" both the identification of vulnerabilities and the detection of

software defects. That is, with PCR = 1 -> PCS = 0 and vice versa, with

PCS = 1 -> PCR = 0.

In this regard, there arises a problem of finding the optimal, from

the point of view of minimizing the time for eliminating defects and

vulnerabilities, distributing measures for their detection in the common

maintenance cycle. Let us consider the following statement of the

problem. In the system with 6 defects and 2 vulnerabilities, we need to

determine the values of PCR and PCS, under which TMBAS iconst –

>min. In this case, it is necessary to further analyze the indirect impact

of parameter selection on the value of AMBAS 2.1min.

To solve the problem, there is an accepted assumption about the

ideality of the measures for identifying defects and vulnerabilities

(PF=0), but it will be removed in the future. The values of the variable

input parameters are presented in Table 37.5.

At PF = 0, the value of the PCS parameter is defined as:

1

1

PCR
PCS

PCR




 . (37.6)

Table 37.5 – The boundaries of the variable values of the

MBAS2.1 model input data

Name
Mathlab-

name
Value row

The number of software defects in the system Nd [0..6]

The probability of software defect detection

and elimination during common maintenance
PСR [0..1]

To investigate the impact of these parameters, special cyclic

software constructs were developed. The results of modeling in the

form of graphical dependencies are shown in Fig. 37.9.

a) b)

Fig. 37.9 – Graphs of the dependence of the resulting parameters

TMBAS 2.1const (а) and AMBAS 2.1min (b) model with the common

maintenance (MBAS2.1) on the input PCR parameter

The simulation results showed that the minimum achievable time

TMBAS 2.1const = 3055.7 hours is achieved with the PCR value of 0.55

(in addition, another parameter is PCS = 0.29). However, it should be

taken into account that the value of the second result parameter

AMBAS 2.1min=0.95711 is in the middle of the curve in Fig.37.9, b, i.e.,

the minimization is performed only by the parameter TMBAS iconst.

Based on the studies carried out, the values of the PCR input

parameter depend on the initial number of defects under the condition

of TMBAS iconst –>min.

Fig. 37.10 – Graph of the dependence between the optimal PCR

parameter (according to the TMBAS iconst –>min criterion) of the

common maintenance model (MBAS2.1) and the initial number of

defects in the Nd system

The values of PCRopt are tabulated and are presented in Table

37.5. Fig. 37.11 shows the dependence of PCRopt on the input

parameters Nd and Nv in three-dimensional space.

Table 37.5 – Tabulated PCRopt values

Nd

Nv
0 1 2 3 4 5 6

0 0 1 1 1 1 1 1

1 0 0,357 0,481 0,544 0,585 0,629 0,677

2 0 0,293 0,388 0,443 0,485 0,527 0,562

3 0 0,254 0,320 0,365 0,436 0,466 0,489

4 0 0,214 0,280 0,329 0,380 0,412 0,430

5 0 0,190 0,246 0,292 0,329 0,360 0,406

6 0 0,167 0,224 0,263 0,308 0,340 0,361

Fig. 37.11 – Three-dimensional graph for the dependence of the

optimal PCR parameter (according to the TMBAS iconst –>min criterion)

in the common maintenance model (MBAS2.1) on the initial number of

Nd defects and the Nv vulnerabilities in the system

We will further consider the impact of the PF parameter on the

values of AMBAS 2.1min and TMBAS iconst. In the process of condition

fulfillment, the assumption is made about the uniformity of efforts

aimed at identifying defects and vulnerabilities in the common

maintenance process (PCR = PCS). Under such condition, the

probability of undetectability of defects and vulnerabilities in the

maintenance process varies from 0 (at PCR = PCS) to 1 (at PCR = PCS

= 0).

a) b)

Fig. 37.12 – The graph for the dependence of the resulting parameters

TMBAS 2.1const (а) and AMBAS 2.1min(b) of the model with common

maintenance (MBAS2.1) on the input PF parameter

The simulation results (Fig. 37.12) illustrate the fact that the

undetection of vulnerabilities and defects in the course of common

maintenance delay the time of their elimination (the resulting parameter

TMBAS 2const increases with the probability PF to 1). In this case, the

value of the resulting indicator AMBAS 2.1min improves due to the fact

that the common maintenance procedures without eliminating defects

and vulnerabilities are shorter (muMt>muMs, muMt>muMr and

muMt>muMrs).

37.2.3 The BAS availability model taking into account separate

maintenance (MBAS3.1)

The model is also extended with respect to the basic MBAS1 and

includes additional states of the separate maintenance procedures.

Unlike the previous model, MBAS2.1, the number of maintenance

states is doubled, since we consider maintenance procedures, the

purpose of which is to identify only software defects, and vice versa,

only vulnerabilities. The marked graph of the model is shown in

Fig.37.13.

F(ND,NV)

F(ND,NV-1)

F(ND-1,NV)

F(ND-1,NV-1)

F(ND,NV-2)

F(ND-2,NV)

F(ND-1,0)

F(0,NV-1)

F(0,0)

 I1(NV)

 I2(NV)

 D1(ND)

 D2(ND)

�I2

�I1

�D1

�D2

 Mr

 Mr

 Ms

 Ms

 Mr

 Ms

PCR*�Mr

PCS*�Ms

(1-PCS)*�Mt

(1-PCR)*�Mt

 Mr

 Ms

 Mr

 Ms

 Mr

 Ms

 Mr

 Ms

PCS*�Ms

PCS*�Ms

PCS*�Ms

PCS*�Ms

PCS*�Ms

(1-PCS)*�Mt

(1-PCS)*�Mt

(1-PCS)*�Mt

(1-PCS)*�Mt

(1-PCS)*�Mt

�Mt

PCR*�Mr

PCR*�Mr

PCR*�Mr

PCR*�Mr

F(ND,NV) Operable state

State of maintenance

by vulnerabilities

�Mt

(1-PCR)*�Mt

(1-PCR)*�Mt

(1-PCR)*�Mt

(1-PCR)*�Mt

PCR*�Mr

(1-PCR)*�Mt

 Ms

�Mt

 Ms

�Mt

 Mr

 Mr

�Mt

�Mt

Inoperable state

State of maintenance

by software defects

a)

b)

Fig. 37.13 – Marked graph of the MBAS3.1 model taking into account

the separate maintenance (a) and the orgraph with the numbering of

states built using grPlot_marker (b)

When constructing the graph of the model, to increase the

visibility it was assumed that the defect or vulnerability was completely

eliminated without restarting the system (i.e., PR = PS = 1). But this

assumption concerns only the graphic representation in Fig. 37.13 (a),

Fig. 37.13 (b) and the subsequent simulation results take into account

the restart of the system.

The states that simulate separate maintenance procedures are

shown by circles with different strokes. Transitions to maintenance

states are performed from operable states: to vulnerability maintenance

states – with the maintenance intensity λMs; to maintenance states for

software defects – with the intensity λMr. Since separate maintenance

is considered, two complete groups of events are formed: the detection

of vulnerability in the maintenance process with the probability of PCS

and undetection of vulnerability with probability (1-PCS); detection of

a software defect in the maintenance process with a probability of PCR

and undetection a defect with probability (1-PCR).

Two transitions are performed from each maintenance state for the

vulnerabilities: the first one with the intensity PCS*μMs simulates the

identification and elimination of the service vulnerability; the second

one with the intensity (1-PCS)*μMt simulates maintenance without

revealing vulnerability. If all vulnerabilities are removed, the transition

from the maintenance state is weighted by the μMt intensity. Similarly,

there is a simulation of transitions from maintenance states to software

defects. Transitions with the intensity of PCR*μMr simulate the

identification and elimination of a software defect in maintenance;

transitions with intensity (1-PCR)*μMt simulate maintenance without

detecting defects. If all defects are eliminated, the transitions from the

maintenance state are weighted by the μMt intensity. The marked

orgraph shown in Fig. 37.13 (b).

To construct the matrix of the Kolmogorov-Chapman system of

differential equations, we use the matrixA function [4]. The

Kolmogorov SDE solution was performed in the Matlab system using

the ode15s method for the time interval of [0 ... 50000] hours. The

availability function is determined by (37.1). The results of the solution

are presented graphically in Fig. 37.14.

Table 37.6 – Values of the input parameters of the MBAS3.1

availability model

Name Mathlab-name
Time

interval
Value

Measur.

Unit

1.

The intensity of the first

software defect

manifestation λD1

laR(1)
5,45

years
5e-4 1/hour

2.

The intensity of the

second software defect

manifestation λD2

laR(2)
6,09

years
4.5e-4 1/hour

3.

The intensity of the first

software vulnerability

manifestation λI1

laS(1)
0,91

year
3e-3 1/hour

4.

The intensity of the

second software

vulnerability

manifestation λI2

laS(2)
0,78

year
3.5e-3 1/hour

5.

The intensity of recovery

with elimination of the

first software defect μD1

muR(1) 2 hours 0.5 1/hour

6.

The intensity of recovery

with elimination of the

second software defect

μD1

muR(2)
2,5

hours
0.4 1/hour

7.

The intensity of recovery

with elimination of the

first software

vulnerability μI1

muS(1)
2,22

hours
0.45 1/hour

8.

The intensity of recovery

with elimination of the

second software

vulnerability μI2

muS(2)
2,94

hours
0.34 1/hour

9.

The intensity of the

restart without

elimination of software

defects μDH1= μDH2

muRH
12

minutes
5 1/hour

10.

The intensity of the

restart without

elimination of software

vulnerabilities μIF1=

μIF2

muSF
10

minutes
6 1/hour

11.

The probability of the

software defect

elimination during

recovery

PR 0.9

12.

The probability of the

software vulnerability

elimination during

recovery

PS 0.9

13.
The number of software

defects in the system
Nd 2

14.

The number of software

vulnerabilities in the

system

Nv 2

15.

The intensity of

maintenance common by

vulnerabilities and

defects λMj

laMj
1000

hours
1e-3 1/hour

16.

The intensity of separate

maintenance by

vulnerabilities λMs

laMj
200

hours
5e-3 1/hour

17.

The intensity of separate

maintenance by defects

λMr

laMr
1000

hours
1e-3 1/hour

18.

The intensity of common

maintenance

performance μMt

muMt
2,5

hours
0.4 1/hour

19.

The intensity of

detection and elimination

of vulnerabilities μMs

muMs 5 hours 0.2 1/hour

20.
The intensity of

detection and elimination
muMr

3,33

hours
0.3 1/hour

of defects μMr

21.

The probability of

vulnerability detection

during maintenance

procedures

PCS 0.4

22.

The probability of

software defect detection

during maintenance

procedures

PCR 0.2

Fig. 37.14 – Graphs of the change in the availability function of the

BAS without maintenance (MBAS1), with the common maintenance

(MBAS2.1) and separate maintenance (MBAS3.1) (the resulting

indicators are determined with the error of 10
-5

)

The simulation results are shown in Fig. 37.14. The graphs of the

models have the same nature of the change in the availability function.

At the first stage the availability of the system is reduced to the

minimum, and then it asymptotically tends to the established value.

Thus, with further analysis of the results, it is necessary to take into

account three parameters:

- the minimum value of the availability function AMBAS imin(for the

MBAS1 model – 0.99641, for the MBAS2.1 model – 0.99286, for the

MBAS3.1 model – 0.97864);

- the availability value in the steady state AMBAS iconst(for the

MBAS1 – 1 model, for the MBAS2.1 model – 0.9975, for the

MBAS3.1 model – 0.9852);

- the time interval for the transition of the availability function to

the steady state TMBAS iconst(for the MBAS1 model – 28117 hours, for

the MBAS2.1 model – 16225 hours, for the MBAS3.1 model – 16810

hours).

As can be seen from the graphs in Fig. 37.14, carrying out

maintenance activities reduces both the established value of the

availability function and its minimum. Due to the accepted assumptions

about the gradual elimination of defects and vulnerabilities, the

availability of the system without maintenance asymptotically tends to

1.

For models with maintenance, the desire of availability to the

value determined by the extreme right fragment is typical, which for the

separate maintenance is:

 3.1MBAS

Mt
A const

Mr Ms Mt



  


  . (37.7)

This can explain the gain of the model with the common

maintenance by the indicators of the minimum of the availability

function (by 0.0142) and the stationary value of the availability

function (by 0.0123).

Carrying out the maintenance allows 1.73 times to speed up the

identification and elimination of defects and vulnerabilities. In this

case, the difference in TMBAS iconstindicators for models with common

and separate maintenance is insignificant (less than 1%). But here it is

necessary to take into account the fact that MBAS2.1 and MBAS3.1

models were given the same probability values for detecting PCS and

PCR defects and vulnerabilities. And if in the model MBAS3.1 PCS

and PCR can vary in the range of 0..1 simultaneously, then in the

MBAS2.1 model the parameters PCS and PCR can simultaneously take

the maximum value of 0.4142.

Further, we are interested in the study of the influence of

individual parameters on the values of the availability function at the

minimum point and the time interval for the transition of the

availability function to the steady state.

Unlike MBAS2.1, in the current model, PCS and PCR parameters

can simultaneously change the value on the interval [0..1]. It is

expected that with better detectability of defects and vulnerabilities

(PCS = 1 and PCR = 1), there will be an acceleration of the transition of

the availability function to the steady state. Then the interest is the

problem of studying the impact of the PCS and PCR parameters on the

minimum of the availability function of AMBAS 3.1min with different

number of defects and vulnerabilities. In addition, the indirect influence

of the input parameters on the value of TMBAS 3.1const should be further

analyzed.

Table 37.7 – The boundaries of the variable values of the MBAS3.1

model input data

Name
Mathlab-

name
Value row

The number of software defects in the system Nd [0..6]

The number of software vulnerabilities in the

system
Nv [0..6]

The probability of detection and elimination a

software defect during separate maintenance
PСR [0..1]

The probability of detection and elimination a

software vulnerability during separate

maintenance

PСS [0..1]

To study the impact of these parameters, special cyclic program

constructs were developed. The results of modeling in the form of

graphical dependencies are shown in Fig.37.15.

0.9775 0.978 0.9785 0.979
0

0.2

0.4

0.6

0.8

1

A
MBAS3

min

PCR

0 1 2 3

x 10
4

0

0.2

0.4

0.6

0.8

1

T
MBAS3

const

PCR

0.96 0.97 0.98 0.99
0

0.2

0.4

0.6

0.8

1

A
MBAS3

min

PCS

a) b)

Fig. 37.15 – Graph of the dependence of the resulting parameters

AMBAS 3.1min (а) and TMBAS 3.1const (b) of the model with separate

maintenance (MBAS3) on the input PCS and PCR parameters

The analysis of the graphs in Fig. 37.15 confirms the optimality of

the parameter PCR = 1 in the MBAS3 model, with the optimality being

performed both by the TMBAS 3.1const–>min criterion and by the

AMBAS 3.1min–>min criterion. At PCS = 1, the optimality is observed by

the criterion AMBAS 3.1min–>min.

The most interesting were the results of the studying the influence

of the PCS parameter values on the resulting indicator TMBAS 3const. If

we look at Fig. 37.15 (d), then it seems that the TMBAS 3.1const values

vary randomly with the change in the PCS. However, the spread

between the obtained values of TMBAS 3.1const does not exceed 16 hours,

which is 3.4e-5 relative to the boundaries of the investigated time

interval. Therefore, in the received configuration, the values of the

input PCS parameter have no impact on the TMBAS 3.1const result. This is

explained by the fact that the intensity of the maintenance by

vulnerabilities is five times greater than the maintenance intensity by

defects, therefore, for any PCS, the system will more get in states of

maintenance by vulnerabilities.

Further, it is advisable to compare the models with the common

and separate maintenance according to the resulting

TMBAS iconstindicator for the optimal values of the input parameters

PCS and PCR.

a) b)

Fig. 37.16 – Dependence of the resultant difference ΔTMBAS iconst(а)

and ΔАMBAS imin (b) for models with separate and common service on

the input parameters Nd and Nv

During the comparison, the values of the intensities of common

and separate maintenance were assumed equal to λMj = λMs = λMr =

1e-3 (1/hour). To increase the visibility, the results are shown in the

form of the dependence of the difference deltaTconst=TMBAS 3.1const–

TMBAS 2.1const on the dimension of the sets of input defects and

vulnerabilities (Nd and Nv).

If there are no defects (Nd = 0) or vulnerabilities (Nv = 0) at the

initial moment of time or Nv=0, models with common and separate

maintenance show a commensurate rate of elimination of

vulnerabilities (Nd=0, Nv=[1..6]) or defects (Nd=[1..6], Nv=0): the

difference between the indicators TMBAS iconstdoes not exceed 102

hours. This can be explained by the fact that in the model with common

maintenance under such conditions the corresponding optimal

parameter PCR = 1 (PCS = 1) is adopted.

However, if there are defects and vulnerabilities in the system

(Nd> 0, Nv> 0), the advantage of the model with separate maintenance

is evident, where defects and vulnerabilities are eliminated faster. This

advantage (illustrated by the difference ΔTconst) increases with the

initial number of defects and vulnerabilities. In addition, Fig.37.16 (b)

illustrates the weak dependence of the difference ΔАMBAS iminon the

number of defects and vulnerabilities; its dynamics does not exceed

10
-4

.

37.2.4 BAS availability model with a limited number of

common maintenances (MBAS2.2)

This model describes the functioning of the system in the context

of common maintenance activities, but unlike the MBAS2.1 model, the

number of such activities throughout the life cycle is limited.

The simulation reflects the following principle: at the planning

stage of the maintenance procedures, developers can only assume the

number of undetected defects and vulnerabilities. In addition, when

planning common maintenance, it is impossible to know in advance

what will be revealed: a defect, a vulnerability, or both defect and

vulnerability. Therefore, it is planned to conduct a certain number of

Np maintenance procedures.

Fig. 37.17 shows a marked graph of the BAS architecture with two

defects and two vulnerabilities (Nd = 2, Nv = 2), in which six (Np = 6)

common maintenance operations are performed. The parameter Np

corresponds to the number of vertical diagonals of the rhomboid Fig. of

orgraph (on which the common maintenance states are located). The

logic of model functioning in this case is the following: the first

maintenance (Np = 1) is carried out after the system is put into

operation and its state has. Next, different paths of transitions over the

states of the model are possible, therefore, the second maintenance (Np

= 2) has two probable states and is carried out either after the defect is

eliminated (transition from the state F(Nd-1, Nv)), or after the

vulnerability is removed (transition from the state F (Nd, Nv-1)) or

skipped (if during the first service both the defect and the vulnerability

are eliminated). The third maintenance (Np = 3) has already three

possible states (with transitions from the states F(Nd, Nv-2), F(Nd-1,

Nv-1), F (Nd-2, Nv)) and also can be skipped if in the course of the

second maintenance both the defect and the vulnerability have been

identified and eliminated. The fourth maintenance (Np = 4) has two

possible states (with transitions from the states F(Nd-1,0), F(0, Nv-1));

the fifth and sixth maintenances have one probable state (with the

transition from the state F (0,0)).

F(ND,NV)

F(ND,NV-1)

F(ND-1,NV)

F(ND-1,NV-1)

F(ND,NV-2)

F(ND-2,NV)

F(ND-1,0)

F(0,NV-1)

F(0,0)

 I1(NV)

 I2(NV)

 D1(ND)

 D2(ND)

PCR*�Mr

 Mj

PCS*�Ms

PCR*�Mr

PCS*�Ms

PCR*�Mr

PCS*�Ms

PCR*�Mr

 Mj

PCS*�Ms

PCR*�Mr

PCR*�Mr

 Mj

PCS*�Ms

PCS*�Ms

 Mj

 Mj

 Mj

 Mj

 Mj

 Mj

�Mt

F(ND,NV) Operable state

Inoperable state

Common

maintenance state

PCR*PCS*�Mrs

PCR*PCS*�Mrs

PCR*PCS*�Mrs

PCR*PCS*�Mrs

(1-PS)*�IF1

PS*�I2

PS*�I1

(1-PS)*�IF2

PS*�I1

PS*�I1

PS*�I2

PS*�I2

(1-PS)*�IF1

(1-PS)*�IF1

(1-PS)*�IF2

(1-PS)*�IF2

PR*�D1

PR*�D1

PR*�D1

PR*�D2

PR*�D2

PR*�D2

(1-PR)*�DH1

(1-PR)*�DH1

(1-PR)*�DH1

(1-PR)*�DH2

(1-PR)*�DH2

(1-PR)*�DH2

F(0,0) F(0,0)

 Mj

�Mt

Fig. 37.17 – Marked graph of the MBAS2.2 model taking into account

the limited number of common maintenances (Np = 6)

The "indicator" of the termination of common maintenance

operations is the counter of their number. However, in the model, such

a counter can only be used if the states of the service are passed once,

i.e., under the condition of absolute effectiveness of the maintenance

operations (PF = 0).

When constructing a model, it is necessary to take into account

three versions of the forecasts of the number of common maintenance

operations:

а) Np<Nd+Nv;

b) Np= Nd+Nv;

c) Np>Nd+Nv.

The marked orgraphs of the models constructed taking into

account these variants of the forecasts are shown in Fig. 37.18. Fig.

37.18 a and b show orgraphs of the system with two defects and

vulnerabilities, in which the number of scheduled maintenance

operations does not exceed 4 (two for Fig. 37.18 a and three for Fig.

37.18b). Fig. 37.18c shows the orgraph of the model, in which the

predicted number of maintenance operations (Np = 6) covers all the

diagonals and corresponds to the actual number of defects and

vulnerabilities in the system. The graph of the model shows that

immediately after the elimination of all defects and vulnerabilities, the

maintenance procedures are terminated.

a) b)

c) d)

Fig. 37.18 – Marked orgraph of the MBAS2.2 model taking into

account the limited number of common maintenance Np = 2 (a), Np = 3

(b), Np = 4 (c), Np = 6 (d).

The orgraph of the model MAS2.2, in which the number of

maintenances (Np = 6) exceeds the real number of diagonals in the

system (Nd + Nv = 4), is shown in Fig. 37.18. As it can be seen from

the graph, after the elimination of all defects and vulnerabilities, the

common maintenance procedures are carried out for two more periods,

and then terminated. In this regard, the availability function covers

additional states and is calculated as:

   
(Nd+1)*(Nv+1)+Np-(Nd+Nv)-1

0

i

i

A t P t


 
 . (37.8)

The calculation of the availability indicators is made for the input

data from Table 37.7. The values of the PCR parameters are taken from

Table 37.5, the parameter PCS is determined from (37.6). To construct

the matrix of the Kolmogorov-Chapman system of differential

equations, we use the matrixA function [4]. The Kolmogorov SDE

solution was performed in the Matlab system using the ode15s method

for the time interval [0 ... 50000] hours. The availability function is

determined by (37.2). The results of the solution are presented

graphically in Fig. 37.19.

Table 37.7 – Values of the input parameters of the MBAS2.2

model

Name
Mathlab-

name

Time

interval
Value

Measur.

unit.

1.

The intensity of the first

software defect manifestation

λD1

laR(1)
5,45

years
5e-4 1/year

2.

The intensity of the second

software defect manifestation

λD2

laR(2)
6,09

years
4.5e-4 1/year

3.

The intensity of the first

software vulnerability

manifestation λI1

laS(1)
0,91

year
3e-3 1/year

4.

The intensity of the second

software vulnerability

manifestation λI2

laS(2)
0,78

year
3.5e-3 1/year

5.

The intensity of recovery with

elimination of the first software

defect μD1

muR(1) 2 hours 0.5 1/year

6.

The intensity of recovery with

elimination of the second

defect μD1

muR(2)
2,5

hours
0.4 1/year

7.

The intensity of recovery with

elimination of the first software

vulnerability μI1

muS(1)
2,22

hours
0.45 1/year

8.

The intensity of recovery with

elimination of the second

software vulnerability μI2

muS(2)
2,94

hours
0.34 1/year

9.

The intensity of the restart

without elimination of software

defects μDH1= μDH2

muRH
12

minutes
5 1/year

10.

The intensity of the restart

without elimination of software

vulnerabilities μIF1= μIF2

muSF
10

minutes
6 1/year

11.

The probability of the software

defect elimination during

recovery

PR 0.9

12.

The probability of the software

vulnerability elimination

during recovery

PS 0.9

13.
The number of software defects

in the system
Nd 2

14.
The number of software

vulnerabilities in the system
Nv 2

15.

The intensity of maintenance

common by vulnerabilities and

defects λMj

laMj
100

minutes
1e-2 1/year

16.
The intensity of common

maintenance procedures μMt
muMt

2,5

minutes
0.4 1/year

17.
The intensity of detection and

elimination μMs
muMs

5

minutes
0.2 1/year

18.
The intensity of defect

detection and elimination μMr
muMr

3,33

minutes
0.3 1/year

19.

The probability of vulnerability

detection during maintenance

procedures

PCS 0.4409

20.

The probability of defect

detection during maintenance

procedures

PCR 0.388

21.
Predicted number of common

maintenance
Np 2

Fig. 37.19 – Graphs of the change in the availability function of the

BAS architecture without maintenance (MBAS1), with the common

unlimited (MBAS2.1) and limited (MBAS2.2) maintenance (the

resulting indicators are determined with the error of 10
-5

)

The analysis of the graphs in Fig. 37.19 showed that the limitation

of the number of maintenances in the MBAS2.2 model allows

achieving the ideal availability (AMBAS 2.2const=1) in the steady state. At

the same time, the value of the availability minimum for models with

limited and unlimited maintenance differs insignificantly (by 8.83e-4).

The transition period for the availability function in the MBAS2.2

mode is 9.48 times higher than that of the MBAS2.1 model with

unlimited common maintenance; however, the elimination of defects

and vulnerabilities in the model with maintenance is faster than in the

MBAS1 model (1.27 times).

Since interest is caused by a decrease in the detection and

elimination of all defects and vulnerabilities, then further we consider

the influence of individual input parameters on the resulting indicator

ТMBAS 2.2const (in addition, their impact on AMBAS 2.2min is analyzed). In

this case, the dimensionality of the model is increased to Nd= 3, Nv=3,

the value of the PCR parameter is also taken from Table 37.5.

Table 37.8 – The boundaries of the variable values of the MBAS2.2

model input data

Name
Mathlab-

name
Value row

Measur.unit

Predicted number of common

maintenances
Np [0..10]

The intensity of maintenance

common by vulnerabilities and

defects λMj

laMj [1e-2..1e-4] 1/hour

To study the impact of these parameters, special cyclic program

constructs were developed. The results of simulation in the form of

graphical dependencies are shown in Fig. 37.20 – Fig. 37.22.

The results of the studying the forecast accuracy impact (Np)

showed the expected result. If the lack of defects and vulnerabilities is

predicted (Np = 0), the MBAS2.2 model degenerates into MBAS1 (Fig.

37.20, a) and has the highest level of AMBAS 2.2min (Fig. 37.20, c). With

the growth in the number of limited Np maintenances up to Np = 6, the

process of identifying and eliminating defects and vulnerabilities as a

whole is accelerating. In this case, the graph of the change of

ТMBAS 2.2const in Fig. 37.20, d has a specific appearance of a broken

curve: up to the limit Np≤Nv + Nd, it shows a decrease in the resultant

index and for Np>Nv + Nd, the value of ТMBAS 2.2const increases with

Np (as unsuccessful maintenance procedures are accumulated). A

noticeable explanation in the behavior of AMBAS 2.2min(Np) at Np = 5 is

given by the fact that with such a number of maintenances the

"availability" is provided from the maintenance state of the extreme

right operable state S15 (Fig.37.21, a). In this case, in Fig. 37.20, a, it is

clear that with the appearance of excessive maintenances (Np = 6, Np =

8), the minimum of the availability function shifts along the time axis to

the right.

a) b)

c) d)

Fig. 37.20 – Graphs of the change in the resulting indicators of the

MBAS2.2 model (a, b – availability functions, c – minimum

availability function, d – transition period to the steady state with the

error of 10
-5

) with a limited number of common maintenances Np

In the course of the study, it was determined that the minimum

resulting indicators of ТMBAS 2.2const are achieved with a forecast of Np

= 6, the marked graph for this forecast is shown in Fig. 37.21, b.

a) b)

Fig. 37.21. –Orgraphof the BAS architecture, Np = 5 (а) and optimal

according to ТMBAS 2.2const–>min criterion of the BAS architecture, Np

= 6 (b)

Further, the impact of maintenance intensity, common by the

vulnerabilities and defects λMj, on the resulting parameters of

ТMBAS 2.2const and AMBAS 2.2min, is considered. When constructing

models, the values of the input parameters Nv = Nd = 3, Np = 6 were

adopted.

a) b)

c) d)

Fig. 37.22 – Graphs of the change in the resulting indicators of the

MBAS2.2 model (a, b – availability functions, c – minimum

availability function, d – transition period to the steady state with the

error of 10
-5

) from the maintenance intensity λMj

The results given in Fig. 37.22 also show the expected result: the

more frequent the maintenance procedures are, the faster the defects

and vulnerabilities will be identified and corrected. The value of the

resulting indicator AMBAS 2.2min decreases linearly.

37.2.5 The BAS availability model taking into account the

limited number of separate maintenance (MBAS3.2)

This model describes system functioning in the context of separate

maintenance activities, but unlike the MBAS3.1 model, the number of

such activities throughout the life cycle is limited.

Simulation shows the same principle as in the MBAS2.2 model: at

the planning stage of the maintenance procedures, developers can only

assume the number of undetected defects and vulnerabilities. But unlike

the common maintenance model, the MBAS3.2 model knows for sure

that only vulnerabilities will be fixed during the maintenance of

vulnerabilities, and only defects will be eliminated during defect

maintenance. Therefore, in the MBAS3.2 model, the Ndp and Nvp

input parameters determine the planned number of maintenances for

defects and vulnerabilities, respectively.

The marked graph of the model is shown in Fig. 37.23. When

constructing the graph of the model to increase the visibility, it was

assumed that the defect or vulnerability was completely eliminated

without restarting the system (i.e., PR = PS = 1). But this assumption

concerns only the graphic representation in Fig. 37.23; subsequent

simulation results take into account the restart of the system.

The graph in Fig. 37.23 is the BAS model with two defects and

two vulnerabilities (Nd = 2, Nv = 2), and it additionally describes three

maintenances by defects (Ndp = 3) and one maintenance by

vulnerability (Nvp = 1). Unlike the MBAS2.2 model, the planned

number of maintenances (for example, over defects) determines not the

number of vertical diagonals of the rhomboid Fig. of the orgraph, but

corresponds to inclined lines in the direction of the shift when

eliminating defects (right-down). In detecting and eliminating defects,

the logic of the functioning of the MBAS3.2 model is the following: the

first maintenance (Ndp = 1) is performed after the system is put into

operation and has three probable states (with transitions from the states

F(Nd, Nv), F(Nd, Nv-1)), F(Nd, Nv-2)). After maintenance, the

detected defect is eliminated, therefore, the second maintenance

(Ndp=2) also has three probable states (with transitions from the states

F(Nd-1, Nv), F(Nd-1, Nv-1), F(Nd-1, 0)). Since only two defects were

initially present in the system, the third maintenance by defects is

redundant and an additional fragment is required for its modeling in the

graph (it is shown by a dashed Fig. line). The third maintenance also

has three probable states.

Since only one maintenance is planned for the vulnerabilities, it

will have four probable states with transitions from the states

F(Nd, Nv), F(Nd-1, Nv), F(Nd-2, Nv), F(Nd-2, Nv)'. The second

vulnerability will be eliminated only after its manifestation.

F(ND,NV)

F(ND,NV-1)

F(ND-1,NV)

F(ND-1,NV-1)

F(ND,NV-2)

F(ND-2,NV)

F(ND-1,0)

F(0,NV-1)

F(0,0)

 I1(NV)

 I2(NV)

 D1(ND)

 D2(ND)

�I2

�I1

�D1

�D2

 Mr

 Mr

 Ms

 Mr

PCR*�Mr

PCS*�Ms

 Mr

 Ms

 Mr

 Mr

 Ms

PCS*�Ms

PCS*�Ms

PCR*�Mr

PCR*�Mr

PCR*�Mr

PCR*�Mr

F(ND,NV) Operable state

State of maintenance

by vulnerabilities

PCR*�Mr

�Mt

Inoperable state

State of maintenance

by software defects

Ndp=1

Ndp=2

Nvp=1F(ND-2,NV)

F(0,NV-1)

F(0,0)

 Ms

PCS*�Ms

 Mr

�Mt

 Mr

 Mr

�Mt

Ndp=3

Fig. 37.23 – Marked graph of the MBAS3.2 model taking into account

the limited number of separate maintenances by defects (Ndp = 3) and

vulnerabilities (Nvp = 1)

When building the model, it is necessary to take into account four

variants of the forecasting the initial number of defects and

vulnerabilities:

а) (Ndp≤Nd)&(Nvp≤Nv)

b) (Ndp≤Nd)&(Nvp>Nv);

c) (Ndp>Nd)&(Nvp≤Nv);

d) (Ndp>Nd)&(Nvp>Nv).

The marked orgraphs of models constructed with these forecast

options are shown in Fig. 37.24. Fig. 37.24, a shows the orgraph of the

system with two defects and vulnerabilities, in which the number of

maintenances by defects/vulnerabilities does not exceed 2 (two by

vulnerabilities and one by defects). To improve the visibility of the

state of maintenance over defects are shown in yellow circles, over

vulnerabilities – in green. Fig. 37.24, b shows the orgraph of the model,

in which the predicted number of maintenance by vulnerabilities

exceeds their number in the system. This causes the occurrence of

additional operable (S3, S7, S11, S15) and inoperable (S27, S31, S35,

S51) states.

a) b)

c) d)

Fig. 37.24 – Marked orgraph of MBAS3.2 model taking into account

the limited number of separate maintenances for configurations:

а) Nd=2, Nv=2, Ndp=1, Nvp=2; б) Nd=3, Nv=2, Ndp=1, Nvp=3;

b) Nd=0, Nv=3, Ndp=1, Nvp=2; г) Nd=3, Nv=3, Ndp=5, Nvp=5.

Fig. 37.24, c shows the orgraph of the model, in which defects are

absent, but one maintenance is planned to be according to defects. This

causes the occurrence of additional operable (S4, S5, S6, S7) and

inoperable (S11, S12, S13, S16, S17) states. The orgraph of the

MBAS3.2 model, in which the number of planned maintenances by

both defects and vulnerabilities (Ndp = 5, Nvp = 5) exceeds their real

number in the system (Nd = Nv = 3) and is shown in Fig.37.24. As can

be seen from the graph, after the elimination of all defects and

vulnerabilities, the maintenance procedures are carried out for two

more periods, and then terminated. In this regard, the availability

function covers additional states and is calculated as:

   
0

N

i

i

A t P t



, (37.9)

(Nd+1) (Nv+1)+(Nd+1)

(max(Nvp,Nv)-Nv)+(Nv+1)

(max(Ndp,Nd)-Nd)

  

 



N

.

The calculation of the availability indicators is performed for the

input data from Table 37.9. For comparison with the MBAS2.2 model,

the latter model has the PCR taken from Table 37.5; the PCS parameter

is determined by (37.6). To construct the matrix of the Kolmogorov-

Chapman system of differential equations, we use the matrixA function

[4]. The Kolmogorov CDS solution was performed in the Matlab

system using the ode15s method for the time interval of [0 ... 50000]

hours. The availability function is determined by (37.9). The results of

the solution are presented in the graphical form in Fig. 37.25.

Table 37.9 – Values of the input parameters of the MBAS3.2 model

Name
Mathlab-

name

Time

interval
Value

Measur.

unit

1.
The intensity of the first software

defect manifestation λD1
laR(1)

5,45

years
5e-4 1/year

2.
The intensity of the second

software defect manifestation
laR(2)

6,09

years
4.5e-4 1/year

λD2

3.
The intensity of the first software

vulnerability manifestationλI1
laS(1)

0,91

years
3e-3 1/year

4.

The intensity of the second

software vulnerability

manifestation λI2

laS(2)
0,78

years
3.5e-3 1/year

5.

The intensity of recovery with

elimination of the first software

defect μD1

muR(1) 2 hours 0.5 1/year

6.

The intensity of recovery with

elimination of the second

software defect μD1

muR(2)
2,5

hours
0.4 1/year

7.

The intensity of recovery with

elimination of the first software

vulnerability μI1

muS(1)
2,22

hours
0.45 1/year

8.

The intensity of recovery with

elimination of the second

software vulnerability μI2

muS(2)
2,94

hours
0.34 1/year

9.

The intensity of the restart

without elimination of software

defects μDH1= μDH2

muRH
12

minutes
5 1/year

10.

The intensity of the restart

without elimination of software

vulnerabilitiesμIF1= μIF2

muSF
10

minutes
6 1/year

11.

The probability of the software

defect elimination during

recovery

PR 0.9

12.

The probability of the software

vulnerability elimination during

recovery

PS 0.9

13.
The number of software defects

in the system
Nd 2

14.
The number of software

vulnerabilities in the system
Nv 2

15.
The intensity of maintenance

common by vulnerabilities and
laMj

1000

hours
1e-3 1/year

defects λMj

16.

The intensity of separate

maintenance by vulnerabilities

λMs

laMs
200

hours
5e-3 1/year

17.
The intensity of separate

maintenance by defects λMr
laMr

1000

hours
1e-3 1/year

18.
The intensity of common

maintenance performance μMt
muMt

2,5

hours
0.4 1/year

19.

The intensity of detection and

elimination of vulnerabilities

μMs

muMs 5 hours 0.2 1/year

20.
The intensity of defectdetection

and elimination μMr
muMr

3,33

hours
0.3 1/year

21.

The probability of vulnerability

detection during maintenance

procedures in the MBAS3.2

model

PCS 1

22.

The probability of software

defect detection during

maintenance procedures in the

MBAS3.2 model

PCR 1

23.

The probability of vulnerability

detection during maintenance

procedures in the MBAS2.2

model

PCS 0.4409

24.

The probability of software

defect detection during

maintenance procedures in the

MBAS2.2 model

PCR 0.388

25.

Predicted number of common

maintenances in the MBAS3.2

model

Nvp 2

26.

Predicted number of common

maintenances in the MBAS3.2

model

Ndp 2

27. Predicted number of common Np 4

maintenances in the MBAS2.2

model

Fig. 37.25 – Graphs of change in the availability function of the BAS

architecture without maintenance (MBAS1); with separate unlimited

(MBAS3.1), common (MBAS2.2) and separate limited (MBAS3.2)

maintenance (the resulting indicators are determined with the error of

10
-5

)

The analysis of the graphs in Fig. 37.25 showed that limiting the

number of separate maintenances in the MBAS3.2 model (as in the

MBAS2.2 model) allows achieving an ideal availability

(AMBAS 3.2const=1) in the steady. Also as in the previous MBAS2.2

model, the minimum availability value for models with limited and

unlimited maintenance differs insignificantly (by 9.73e-5). However,

common maintenance remains an advantageous one according to the

AMBAS imin (by 0.022) indicator.

If we compare models with limited and unlimited maintenance,

then it is clear that the latter (MBAS2.1 in Fig. 37.19 and MBAS3.1 in

Fig. 37.25) has a shorter period of transition of the availability function

to the steady state. The difference between the resulting ТMBAS iconst

indicators of models MBAS3.1 and MBAS3.2 is 882.6 hours. The

transition period for the availability function to the steady state in the

MBAS3.2 model is 1346.4 hours less than in the limited common

maintenance MBAS2.2. In addition, eliminating defects and

vulnerabilities in the model with maintenance is faster than in the

MBAS1 model (4.2 times).

Since interest is caused by a decrease in the detection and

elimination of all defects and vulnerabilities, then further we consider

the influence of individual input parameters on the resulting indicator

ТMBAS 3.2const (in addition, their impact on AMBAS 2.2min is analyzed).

The dimensionality of the model is increased to Nd = 3, Nv = 3.

Table 37.10 – The boundaries of the MBAS3.2 model input values

Name
Mathlab-

name
Value row

Measur.unit

Predicted number of separate

maintenances
Ndp, Nvp [0..10]

The intensity of defect detection and

elimination μMr
muMr [0.1..1] 1/hour

The results of modeling in the form of graphical dependencies are

shown in Fig. 37.26 – Fig. 37.27.

Dependence of the resulting indicator AMBAS 3.2min on the number

of separate maintenances is shown in Fig. 37.26, a. Analysis of the

three-dimensional graph allows to distinguish the following points. The

BAS system without maintenance is optimal according to the criterion

AMBAS 3.2min–>max (Ndp=Nvp=0, AMBAS 3.2min=0,996). The system

without maintenance by defects (Ndp = 0, Nvp> 0) exceeds the system

without maintenance by vulnerabilities (Nvp = 0, Ndp> 0) by

AMBAS 3.2min by 0.021. In BAS systems with the number of limited

separate maintenances greater than the real number of defects and

vulnerabilities (Ndp> 3, Nvp> 3), the change in AMBAS 3.2min does not

exceed 6.3e-8.

a) b)

Fig. 37.26 – Graphs of the change in the resulting indicators of the

MBAS3.2 model (a – the minimum of the availability function, b – the

period of transition to the steady state with the error of 10
-5

) with a

limited number of separate maintenances

Fig. 37.26b shows the dependence of the transition period of the

MBAS3.2 availability function in the steady state on the number of

separate maintenances. The location of the minimum on the three-

dimensional graph is shown by a special metrics and corresponds to the

value min(ТMBAS 3.2const)=8496,153 hours under the configuration of

the number of maintenances Nvp = 3, Ndp = 4. In BAS systems with

the number of limited separate maintenances greater than the actual

number of defects and vulnerabilities (Ndp> 3, Nvp> 3), the change in

the ТMBAS 3.2const does not exceed 1256.546489 hours, but there is a

growing trend of ТMBAS 3.2const with an increase in Nvp, which is

shown in Fig. 37.27.

Fig.37.27 – Details of the change of ТMBAS 3.2const in the MBAS3.2

model on the intervals Ndp> 3, Nvp> 3

When analyzing the three-dimensional graph in Fig. 37.26, and

over Ndp = const, an insignificant chaotic change in the parameter

ТMBAS 3.2const is observed at the intervals Nvp<3 and Nvp> 3 under

Ndvp> 3 and for the entire interval Nvp = [0..10] under Ndvp< 3. This

is shown in detail in Fig. 37.28.

a) b)

Fig.37.28 – Detailization of the change in ТMBAS 3.2const of the model

MBAS3.2 on slices Ndp = 1 (a), Nvp = 7 (b)

Explanation of this dependence follows from the difference in the

input parameters λMs and λMr – with their accepted values (λMs = 5е-

3 and λMr = 1е-3), the transition to the maintenance state by

vulnerabilities is performed with greater intensity.

Next, the influence of the intensity of the detecting and eliminating

the μMr defect on the resulting parameters of ТMBAS 3.2const and

AMBAS 3.2min is considered. When constructing models, the values of the

input parameters Nv = Nd = 3, Nvp = 3, Ndp = 4 were taken.

a) b)

c) d)

Fig. 37.29 – Graphs of the change in the resulting indicators of the

MBAS3.2 model (a, b – availability functions, c – minimum

availability function, d – transition period to the steady with the error of

10
-5

) from the intensity of detection and elimination of the defect μMr

The results shown in Fig. 37.29 also show the expected result: if

the maintenance quickly identifies and corrects defects, then the

minimum availability function (AMBAS 3.2min) increases, and the

transition period to the steady state decreases. Thus, with a 10-fold

acceleration of detection and elimination of defects during

maintenance, the value of AMBAS 3.2min increases by 0.0084, and the

period of detection and elimination of all defects and vulnerabilities

decreases by 1.2872 times.

37.3 Scaling of availability models for information and control

systems of smart buildings

With the expansion of intellectualization systems to the level of

the university campus (Fig. 36.7), the number of types of failures and

points of cyber-attacks application that determine the state of a system-

wide failure potentially increases. Taking into account their step-by-

step elimination in the course of security and safety maintenance

activities, or after their manifestation, the dimension of the Markov

models increases (as the number of model fragments increases).

Despite the fact that in this Chapter the typical architecture of BAS for

Nd = 2 and Nv = 2 was considered, the developed models simply scale

to an arbitrary number of defects and vulnerabilities. The increase in

the dimensionality of the models was illustrated in Fig. 37.18, Fig.

37.21 and Fig. 37.24; And the results of calculations of models with

increased dimensionality, for example, made it possible to construct the

dependence of the PCR parameter (according to the TMBAS iconst –>min

criterion) of the common maintenance model (MBAS2.1) on the initial

number of defects in the Nd system.

Conclusions

The chapter presents FTA, ATA and Markov models for

availability of smart BAS taking into account various variants of

recovery and maintenance processes as well as the parameters of

software faults and vulnerability attacks.

These models are combined to assess availability, and cyber

security, to improve the accuracy of assessing availability indicators

and determine the requirements for the coefficient of cyber security and

availability (the level of availability of the system in the steady state).

The BAS models and technique considering the different modes

and strategies of system maintenance (with and without the elimination

of faults and vulnerabilities after their detection, with and without the

maintenance procedures, etc.) have been described and analyzed.

Questions to self-checking

1. Please describe the classification for availability models of

BASs.

2. Which are the main differences between common and

separate maintenance?

3. Which are the main differences between unlimited and limited

number of maintenance?

4. Which are the main differences between maintenance by

reliability and security?

5. Which are the main steps of base modeling without

maintenance MBAS1

6. Which are the main steps of modeling BAS with common

unlimited maintenance MBAS2.1?

7. Which are the main steps of modeling BAS with common

limited maintenance MBAS2.2?

8. Which are the main steps of modeling BAS with separate

unlimited maintenance MBAS3.1?

9. Which are the main steps of modeling BAS with separate

limited maintenance MBAS3.2?

10. Please describe the scaling of availability models for BASs.

References

1. K. S. Trivedi, D. S.fdc Kim, A. Roy and D. Medhi,

Dependability and security models, – In 7th International Workshop on

Design of Reliable Communication Networks, – Washington, DC, – pp.

11-20, – 2009. doi: 10.1109/DRCN.2009.5340029.

2. Q. Yu and R. J. Johnson, Smart grid communications

equipment: EMI, safety, and environmental compliance testing

considerations, – Bell Labs Technical Journal, – vol. 16, no. 3, – pp.

109-131, – Dec. 2011, doi: 10.1002/bltj.20525.

3. Kharchenko, V., Odarushchenko, O., Odarushchenko, V.,

Popov, P. Selecting mathematical software for dependability

assessment of computer systems described by stiff markov chains. –

CCIS, – vol. 1000, – pp. 146–162. – 2013/

4. Kharchenko V., Abdul-Hadi A.M., Boyarchuk A.,

Ponochovny Y. Web Systems Availability Assessment Considering

Attacks on Service Configuration Vulnerabilities. – Advances in

Intelligent Systems and Computing, – vol 286. – P.275-284 – 2014. doi:

10.1007/978-3-319-07013-1_26.

5. M. Grottke, H. Sun, R. Fricks and K. Trivedi, Ten Fallacies of

Availability and Reliability Analysis, Service Availability. – Lecture

Notes in Computer Science, – vol 5017, – pp. 187-206, – 2008, doi:

10.1007/978-3-540-68129-8_15.

6. Kharchenko V., Ponochovnyi Y., Abdulmunem AS.M.Q.,

Andrashov A. Availability Models and Maintenance Strategies for

Smart Building Automation Systems Considering Attacks on

Component Vulnerabilities. – Advances in Intelligent Systems and

Computing, Vol. 582, 2017, P. 186-195. DOI: 10.1007/978-3-319-

59415-6_18.

ПЕРЕЧЕНЬ СОКРАЩЕНИЙ К РАЗДЕЛУ 37

BAS – Building automation system

I&CS – Information and control systems

SDE – System of differential equations

АННОТАЦИЯ

В разделе представлены марковские модели готовности

информационно-управляющих систем умных домов,

учитывающие различные варианты процессов восстановления и

обслуживания, а также параметров проявления программных

дефектов и атак на уязвимости, что позволяет повысить точность

оценки и определить требования к коэффициенту готовности и

средствам киберзащиты. Рассмотрены реализации аналитических

моделей готовности информационно-управляющих систем умных

домов с учетом отказов и атак на компоненты их архитектуры

(MBAS1), с учетом проведения неограниченного количества

процедур общего и раздельного обслуживания (MBAS2.1,

MBAS3.1) и с учетом проведения ограниченного количества

процедур общего и раздельного обслуживания (MBAS2.2,

MBAS3.2) по надежности и безопасности.

У розділі представлені марковські моделі готовності

інформаційно-керуючих систем розумних будинків шляхом

врахування різних варіантів процесів відновлення і

обслуговування, а також параметрів прояву програмних дефектів і

атак на вразливості, що дозволяє підвищити точність оцінювання

та визначити виконання вимог до коефіцієнту готовності та засобів

кіберзахисту. Розглянуті реалізації аналітичних моделей

готовності інформаційно-керуючих систем розумних будинків з

урахуванням відмов і атак на компоненти їх архітектури (MBAS1),

з урахуванням проведення необмеженої кількості процедур

загального і роздільного обслуговування (MBAS2.1, MBAS3.1) і з

урахуванням проведення обмеженої кількості процедур загального

і роздільного обслуговування (MBAS2.2, MBAS3.2) по надійності і

безпеці.

Building automation systems Markov models are discussed in the

section. Markov models for availability of information and control

systems of smart buildings have been improved by taking into account

different variants of recovery and maintenance processes, as well as

parameters of manifestation of software defects and vulnerability

attacks, which allows to increase the accuracy of evaluation and to

determine the fulfillment of the requirements for the availability factor

and means of cyber security. Analytical models for the availability of

information and control systems of smart homes, taking into account

failures and attacks on their architecture components (MBAS1), have

been developed considering the unlimited number of common and

separate maintenance procedures (MBAS2.1, MBAS3.1) and the

limited number of common and separate maintenance (MBAS2.2,

MBAS3.2) procedures for reliability and security are discussed.

V. Sklyar, V. Kharchenko, E. Babeshko, A. Kovalenko, O.Illiashenko, O. Rusin, A. Panarin,

S. Razgonov, D. Ostapec, I. Zhukovyts’kyy, S. Stirenko, O. Tarasyuk, A. Gorbenko,

A. Romanovsky, O. Biloborodov, I. Skarha-Bandurova, E. Brezhniev, A. Stadnik, A. Orekhov,

T. Lutskiv, V. Mokhor, O. Bakalynskyi, A. Zhylin, V. Tsurkan, M. Q. Al-sudani,

Yu. Ponochovnyi

SECURE AND RESILIENT COMPUTING FOR
INDUSTRY AND HUMAN DOMAINS.

Secure and resilient systems,
networks and infrastructures

Multi-book, Volume 2

Editor Vyacheslav Kharchenko

 National Aerospace University n. a. N. E. Zhukovsky
“Kharkiv Aviation Institute”

17 Chkalova street, Kharkiv, 61070, Ukraine
http://www.khai.edu

