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Abstract. An exact analytical solution of the quasistatic problem of thermoelasticity is 

presented for a section of a narrow multilayer beam with different temperatures of the 

longitudinal lower and upper faces and a heat flow of arbitrary height across the sections 

through the lateral faces. The solution was obtained for the entire package of layers by 

sequentially solving the heat equation for an inhomogeneous beam, taking into account the 

ideal thermal contact of the layers and the system of equations of the plane problem of the 

theory of elasticity under the assumption of a rigid connection of the layers. To take into 

account the inhomogeneity of the beam, a continuum approach is used, in which the multilayer 

material is considered continuous with variable physical and mechanical characteristics. The 

resulting relations take into account the orthotropy of the physico-mechanical properties of the 

materials of the layers and their compliance with the transverse shear and compression strains. 

An example of implementation of a solution for a five-layer beam with combined rigid and 

articulated fastening of the ends is given. 

1. Introduction 

Bars and beams are one of the most common elements of engineering structures. For composite 

beams, a multilayer structure with a pronounced difference in the mechanical characteristics of the 

layers is typical. With proper design, this provides a significant gain in the specific strength and 

stiffness of the composite beam in comparison with a homogeneous analogue. However, the 

combination of dissimilar materials in the structural element has certain disadvantages, one of which is 

the occurrence of temperature deformations and stresses. In contrast to homogeneous in multilayer 

boards even in a uniform temperature field, the occurrence of temperature stresses and displacements 

is inevitable. This can significantly reduce the reserve of the bearing capacity of the element for the 

perception of the useful external load. Therefore, the development of theories of bending of composite 

bars in the direction of taking into account temperature deformations is an important direction in the 

mechanics of structurally inhomogeneous elements. 

Along with high-tech glass and carbon fiber, the reinforced concrete widely used in construction 

also belongs to composites. Despite the nonlinearity of the elastic characteristics of polymer matrices, 

reinforced plastics exhibit an almost linear relationship between stresses and strains up to failure [1]. 

As experimental studies show, for example [2, 3], when calculating reinforced concrete beams, it is 

important to take into account the nonlinearity of the mechanical characteristics of the concrete matrix. 

However, with certain reservations, the phase materials of such composites can be considered as 

linearly elastic materials. 

To date, a significant number of scientific papers have been published on the problems of elastic 

deformation of composite beams with various methods of solution, types of loading and fastening, as 

well as features of the properties and structure of materials. If we consider the analytical direction of 

solution methods, then refined bending models are quite developed for multilayer beams, for example 

[4-7]. The main approaches to the construction of bending models of various orders can be found in 

the review [8]. 

No less important for the analytical direction, is to obtain accurate solutions of the equations of 

elasticity theory for the problems of deformation of composite bars, which give a more accurate and 
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complete picture of the distribution of stress-strain state (SSS) characteristics. Most of these solutions 

were obtained for a separate simple type of load: load at the end [9-13], uniform [9, 14-21], linear [22-

25] or sinusoidal [26, 27] normal load on the longitudinal faces. In a number of works, more complex 

laws of changing the intensity of the load in the form of the sum of a power [28, 29] or trigonometric 

[30-32] series, as well as their combination [33], are considered. 

Among the mentioned works, the majority is devoted to beams made of functionally gradient 

materials (FGM) and a relatively small number to multilayer beams [10, 11, 13, 20, 21, 25, 32]. The 

temperature component of stresses and displacements was considered only in [15, 35] devoted to FGM 

beams. If we do not take into account the classical theory of temperature bending of a bimetallic strip 

[36], which in some cases corresponds to the theory of elasticity, then for multilayer beams exact 

analytical solutions are practically absent. 

In this work, an exact analytical solution is proposed for the quasistatic problem of thermoelasticity 

of a multilayer beam in an important case for practice of different temperatures of longitudinal 

surfaces and symmetric heat transfer through side faces. In this case, a complete system of equations 

of thermoelasticity is applied, including the heat equation. 

2. Problem formulation 

Let us consider a section of a multi-layer beam with a length l  consisting of m  heterogeneous layers 

of the same width b  (figure 1). The layers are rigidly interconnected and have perfect thermal contact. 

The cross section of the beam is constant along the length of the section and has the shape of a narrow 

rectangle (figure 1b), the dimensions of which meet the condition: b h l  . 

 
 a b 

Figure 1. Scheme of a section of a bar and its cross section. 

The longitudinal edges of the beam are free from external loads (figure 1a), and the forces in the 

extreme sections are reduced to the resultant , , ,, ,x z yN Q M    ( 1, 2  ) and constitute a balanced 

system of forces. 

We consider that during the manufacture of the beam, all its layers had the same temperature 

0 constT  , and during operation on the surface of the lower ( 1z z ) and upper ( 2z z ) longitudinal 

faces, a uniform temperature constt   is maintained. On the lateral longitudinal surfaces there is a 

symmetric heat exchange with the external environment. The heat flow density through these surfaces 

is constant along the length of the section and varies arbitrarily along the section height:  q q z  . 

The bar layers are homogeneous orthotropic or functionally gradient (FG) in thickness. The 

orthotropy planes of the mechanical and thermophysical characteristics are parallel to the coordinate 

planes. For an arbitrary k th layer, independent physical and mechanical characteristics are specified: 

 

                 
0 0, , , , , , ,

k k k k k k k k k

x z xz xz x z x z aE E G S     
, (1) 
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where 
   

,
k k

x zE E  – longitudinal and transverse elastic moduli of k th layer; 
 k

xzG  – shear modulus; 
 k

xz  

– Poisson ratio; 
   

,
k k

x z   – linear thermal expansion coefficients; 
   
0 0,
k k

x z   – thermal conductivity at 

initial temperature 0T . 

Within a homogeneous layer, the physico-mechanical characteristics are constant 
 

const
k

aS  , and 

for the FG layer, the law of their change along the section height is specified      k k

a aS S z . 

For the entire section, an arbitrary characteristic, similar to [13, 20, 25, 31], can be represented as a 

piecewise continuous function  S

a z : 

 

      , 1 ,

1

m
kS

a a bd k bd k

k

S H z z H z z



      
, (2) 

where  H z  – Heaviside function. 

We consider that the axis Ox  passes through the center of stiffness of each section of the bar, the 

coordinate Oz   (figure 1b) of which, relative to the lower edge of the section of the bar, is determined 

by the ratio 

 
 

0 0

h h

E E

O x xz z dz dz     
, (3) 

where E

x
  – distribution function of the longitudinal elastic modulus for the case when the origin of 

the coordinate system is on the lower face of the section. 

Let us determine the distribution of the temperature field and the field of stresses, deformations, 

and displacements associated with it within the considered section of the multilayer bar under the 

assumption that its thermal state is steady-state and upon transition to it the materials of all layers are 

deformed elastically. 

3. The solution of heat conduction problem 

When solving this problem, the priority is to obtain the distribution of the temperature field inside the 

beam, which gives the necessary initial data for determining its SSS. 

In the case of a steady state of heat and in the absence of internal heat sources, the heat equation for 

a composite straight-line bar [34], after a corresponding replacement of the coordinate notation 

( ,x z  ) and taking into account equation (2), will take the form 

 

2 2

0 0 02 2
0x z y

T T T

x z z y

      
     

     , (4) 

where  , ,T T x y z  – temperature field distribution function. 

Integrating equation (4) over the section width and dividing the resulting expression by b , we have 

 

2

1

2

0 0 02

1
| 0y y

x z y y y

T T T

x z z b y

  



     
      

       , (5) 

where 1 2,y y  – the coordinates of the left and right longitudinal side faces of the bar; T  – temperature 

averaged over the width of the section 
2

1

1
y

y

T Tdy
b

 
. 

In the case of symmetric boundary conditions of the second kind on the lateral faces [34]: 

 

 
1

0 | 1 , 1,2y y y

T
q

y 

 



 
     

  , (6) 
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where q  – heat flow density through the side faces of the bar. 

In view of equation (6), equation (5) takes the following form 

 

2

0 02

2
x z

T T q

x z z b


    

    
    . (7) 

Thus, we will seek the desired temperature distribution as a solution to equation (7), which 

corresponds to boundary conditions of the first kind on the longitudinal faces: 

 1 21 2| const, | constz z z zT t T t    
. (8) 

The condition of symmetry of heat transfer conditions on the lateral longitudinal surfaces together 

with conditions equation (8) let us suggest that the solution to equation (7) will have the form 

 T T T z  . Then the partial differential equation (7) is transformed to an ordinary inhomogeneous 

differential equation 

 
0

2
z

d dT q

dz dz b


 

  
  . (9) 

By double integration equation (9) we obtain 

 1 1 1

0 1

0 0

2 1 1
z z z

z zz z z

T q dz dz C dz C
b



 

 
   

   
  

, (10) 

where 0 1,C C  – unknown constants. 

Substituting solution equation (10) into equation (8) and solving the obtained equations, we have 

 
1 1 0

0

,
t Q

C t C
B





 
 

, (11) 

where 0 , ,B Q t    – constant: 

 

2 2

1 1 1

0 2 1

0 0

1 1
, ,

z z z

z zz z z

B dz Q q dz dz t t t  

 

 
     

   
  

. (12) 

In view of equation (11), solution equation (10) takes on following form 

 1 1 1

1

0 0 0

2 1 1 2 1
z z z

z zz z z

Q
T q dz dz t dz t

b B b




  

   
           
  

. (13) 

It should be noted that based on the general solution equation (10), one can also obtain particular 

solutions in the case of a given heat flow density (conditions of the second kind) or a given law of heat 

exchange with the environment (conditions of the third kind) on longitudinal faces [34]. 

Relation equation (13) gives the temperature field distribution inside the considered section of the 

multilayer beam and allows us to go on to determine the associated SSS. The obtained solution 

satisfies the heat equation and boundary conditions on the longitudinal surfaces and is accurate if the 

temperature distribution in the extreme sections of the section corresponds to equation (13). 

 

 

4. The solution of the elasticity problem 

The accepted initial conditions for determining the SSS of the considered section of the beam allow us 

to apply the equations of the plane problem of the linear theory of elasticity. The Navier equations and 

the Cauchy relations for the considered multilayer beam will be similar to the classical ones. However, 
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instead of elastic constants, Hooke's law must contain functions equation (2), which allow one to take 

into account the inhomogeneity of the: 

 

     0 0

1 1
, ,xz xz

x x xz z x z z xz xzE E E G

x z x xz

T T T T


   
               

   
, (14) 

where the dependence E E

x zx z xz

      is taken into account for orthotropic material. 

On the longitudinal edges of the beam, the solution must meet uniform static conditions 

 
| 0, | 0, 1, 2z z z xz z z       

. (15) 

In the leftmost section of the section, we require the fulfillment of integral conditions [13]: 

 

     
2 2 2

1 1 1

11 1
0 0 0| , | , |

z z z

yx z
x x x x xz x

z z z

MN Q
dz z dz dz

b b b
           

. (16) 

Having solved the Navier equations with respect to normal stresses, taking into account equation 

(15), we obtain the following relations 

 1

0

0

| ,

x z

xz xz
x x x z

z

dx dz
z x



 
      

  
. (17) 

In the absence of load on the longitudinal faces of the bar, the transverse force: 1 constz zQ Q  , 

which, with equation (16), allows us to make an assumption 

 
 xz xz z  

. (18) 

In view of equation (18), solutions of equation (17) take the form 

 
0| , 0xz

x x x z

d
x

dz



     

. (19) 

Substituting equation (19) into equation (14) we obtain the following relations for strains 

   0 0 0 0

1
| , | ,xz xz xz xz

x x x x z x x z xzE E G

x x xz

d d
x T T x T T

dz dz


 

 

      
                 

      , (20) 

Having solved the Cauchy relations for linear strains with respect to longitudinal u  and transverse 

w  displacements, taking into account equation (20), we obtain 

 

 

  
1

1 1 1

2

0 0 0

0 0

1
| | ,

2

| | .

xz
x x x xE

x

z z z

xz xz xz
x x z z zE E

x xz z z

d x
u x T T x u

dz

d
w x dz dz T T dz w

dz



 

 


 

 
      

  

     
         

    
  

 (21) 

Substituting equation (21) and the third dependence equation (20) into the Cauchy relation for 

angular strains, we obtain the following integral-differential expression 

  1

1

2

0
0

0

| |1

2

|
0.

z z xz x x
xE E

x x

z

x xz xz xz

G E

xz xz

dw dd x d d
T T x

dx dz dz dz dz

du d
dz

dz dz

 





       
           

          

    
     

    


 (22) 

Identity equation (22) will be valid for all points of the beam section only if the expressions in 

square brackets are equal to some constant: 
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  
1

0 0
0 0 1 2

| |1
, ,

z

xz x x x xz xz xz
xE E G E

x x xz xz

d du dd d d
K T T K dz K

dz dz dz dz dz dz


 

         
            

        


. (23) 

In view of equation (23), expression equation (22) is transformed into a linear differential equation: 

 

1

2

0 1 2

|

2

z zdw x
K K x K

dx


  

. (24) 

Equations (23), (24) allow us to determine the desired function xz , as well as unknown integration 

functions 
10 0| , | , |x x x z zu w   . 

When solving the first equation (23), taking into account the boundary conditions equation (15) and 

the third condition equation (16), we obtained 

 

 
1

1 1
0

2 2

,

z

Ez z
xz x

z

Q Q
z dz K

bB bB
     

, (25) 

It is taken into accounts that in the adopted coordinate system [13]: 

 

   
2 2

1 1 1

2 , 0

z zz

E E

x x

z z z

B z dzdz z dz     
. (26) 

Relation equation (25) is similar to the solution for shear stresses when bending a multilayer 

cantilever with a free end load. Thus, temperature strains do not directly affect the distribution of shear 

stresses and strains; however, they can affect their magnitude through a change in the shear force in 

statically indeterminate elements. 

The general solution of the second equation (23) 

 
 0 0 1 0| E E E

x x x x x xT T K z C

        
. (27) 

Substituting equation (27) into conditions equation (16) and solving the obtained equations with 

respect to unknowns 1K  and 0C  taking into account equation (26), we have 

 

11
0 1

0 2

,

TT
yx

M MN N
C K

bB bB


 

, (28) 

where 0, ,T TN M B  – constant: 

 

   
2 2 2

1 1 1

0 0 0, ,

z z z

T E T E E

x x x x x

z z z

N b T T dz M b z T T dz B dz                  
. (29) 

The quantities TN  and TM  have the dimension of force and moment, respectively. This allows us 

to consider them as the temperature components of the longitudinal force and bending moment inside 

the section of the beam. 

Substituting equation (28) into equation (27) we obtain 

 

 11
0 0

0 2

|

TT
yE x

x x x x

M MN N
z T T

bB bB





 
      

   . (30) 

As we see in equation (30), the temperature component of normal stresses can be clearly 

distinguished, which at 0 0T T   is equal to zero, which leads (30) to the relation obtained in [13]. 

The solution of the third equation (23) taking into account equation (25) 

 

     
1

1 1 1

1
0 2 1 0,

2

1
| |

z z z

Ez
x x xz x z zG

xzz z z

Q
u z dz z dz dz K z z u

bB



  

 
        

  
  

. (31) 
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Express the constant 2K  through the displacement of the upper fiber in the initial section. 

Accepting in equation (31) 2z z  and solving relatively to 2K , we obtain 

 
 

2 1

1 2
2 0, 0,

2

1
| |z
x z z x z z

Q D
K u u

b hB h
     

, (32) 

where 2D  – constant: 

 

   
2

1 1 1

2

1
z z z

E

x xzG

xzz z z

D z dz z dz dz
 

    
  

  
. (33) 

In view of equation (32), relation (31) takes the following form 

 

     
2 1

1 1 1

1 2 1 2
0 1 0, 0,

2

1
| | |

z z z

Ez
x x xz x xG

z z z zxzz z z

Q D z z z z
u z dz z dz dz z z u u

bB h h h



  
 

    
          
    
  

. (34) 

The solution of equation (24) after substituting (25), (28) and (32) is obtained in this form: 

 
1 1

2 1

3 2
11 2

0, 0, ,
02 2

| | | |
6 2

T

yz
z z x x z z

z z z z x

M MQ Dx x x x
w x u u w

bB h bB h h
   

  

 
       

  . (35) 

Solutions equations (25), (30), (34) and (35) together with (19), (20) and (21) allow us to write the 

final relations for the desired functions of stresses, deformations, and displacements. 

Taking into account equations (19), (25) and (30) for stresses, we have 

   
1

111 1
0

2 0 2 2

, 0,

T zT
yE Exz z

x x x z xz x

z

M MN NQ Q
zx z T T z dz

bB bB bB bB


 

             
  

 . (36) 

Strain equation (20) after substitution (25) and (30): 

 

  

 
1

1 11

2 2 0

1 11
0

2 2 0

1

2

,

,

1
.

T T
y xz

x

T T
y xz

z xz xz x z

z

Ez
xz xG

xz z

M M N NQ
zx z

bB bB bB

M M N NQ
zx z T T

bB bB bB

Q
z dz

bB

   

 
   

  
            

 

   
 

 (37) 

Displacements equation (21) taking into account (34), (35): 

     

   

1 1 1

2 1

1 1

2

1 2
1

2

11 1 2
0, 0,

0 2

3 2
11 2

2 2

1

2

| | ,

6 2

z z z

Ez
x xzG

xzz z z

TT
yx

x x
z z z z

Tz z
yz

xz xz

z z

Q Dx z
u z dz z dz dz z z

bB h

M MN N z z z z
x xz u u

bB bB h h

M MQ Dx x
w x z dz z dz

bB h bB



 
 

 

  
         

    

  
   

   
          

     

  

 

  
1

1 2
1 1

1
0 0, 0, ,

00

| | | .

z zT

x
xz xz x z x x z z

z z z z xz z

N N x x
dz T T dz u u w

bB h h

   

  
  




 



           
  

 (38) 
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The conditions of absolutely rigid connection of the layers imply the equality of the total stress and 

displacement at each point on the common surface of arbitrary two layers, which requires the 

following static and kinematic conditions: 

 

       
, , , ,

1 1
| | , | | , 1, 1

bd k bd k bd k bd k

k k k k

xz z z xz z z z z z z z z k m
 

          
, (39) 

 

       
, , , ,

1 1
| | , | |

bd k bd k bd k bd k

k k k k

z z z z z z z zw w u u
 

    
. (40) 

In the solutions for ,xz u  and w , the functions of the elastic characteristics S

a , which have a 

discontinuity at the boundaries of the layers, are found only in integrand expressions. This ensures the 

continuity of the respective SSS components and the fulfillment of conditions equations (39) and (40). 

Thus, relations equations (36), (37) and (38) satisfy all the equations of the plane problem of the 

theory of elasticity, boundary conditions on longitudinal surfaces, and conditions of absolutely rigid 

connection of layers. The resulting solution is accurate provided that in the extreme sections of the 

section the distribution of internal forces or external load corresponds to the obtained distribution of 

stresses. 

The displacement solution contains three unknown displacements of the extreme points of the 

initial section of the beam section: 
1 2 10, 0, , 0| , | , |x z z x z z z z xu u w       (initial kinematic parameters) and three 

forces in the initial section: 1 1 1, ,x z yN Q M  (initial static parameters). For a bar, which consists of 

several sections, these constants make it possible to coordinate the deformations of the considered 

section with its neighboring parts. In the case of a bar consisting of one section using these constants, 

you can simulate various types of fastening of the extreme sections. 

In the general case, six unknowns 
1 2 10, 0, , 0| , | , |x z z x z z z z xu u w       and 1 1 1, ,x z yN Q M  allow you to set 

independent movements of four arbitrary points of the extreme sections (two points in the left and 

right sections). In [21], a method for modeling various fastenings of the ends of a multilayer beam was 

proposed, which can be applied in the case under consideration. 

Based on the principle of superposition, the obtained solution can be superimposed on the solutions 

[20, 25, 32], which allows one to obtain the SSS ratios for the case of multilayer beam bending by an 

arbitrary load on the longitudinal faces, taking into account the temperature conditions considered 

here. 

5. Example of realization of the relations obtained 

Let us determine the temperature field distribution and the resulting SSS for a five-layer beam with 

rigid fastening of the left end and pivotally fixed fastening of the right end (figure 2). The materials of 

the layers and their physical and mechanical characteristics: 

 CFRP ( 1P ): 
 1

142.80xE GPa , 
 1

9.13zE GPa , 
 1

5.49xzG GPa , 
 1

0.320xz  , 
 1 10.0x K   , 

  161
27.7 10z K   , 

   
11

0 0.385z W m K


   ; 

 GRP ( 2 4,P P ): 
 2,4

36.8xE GPa , 
 2,4

11.00zE GPa , 
 2,4

4.50xzG GPa , 
 2,4

0.351xz  , 

 2,4 6 17.8 10x K    , 
  62,4 149.9 10z K    , 

   
12,4

0 0.460z W m K


   ; 

 wood ( 3P ):
 3

12.80xE GPa , 
 3

0.625zE GPa , 
 3

0.617xzG GPa , 
 3

0.360xz  , 

 3 6 15.4 10x K    , 
  163

34.0 10z K   , 
   

13

0 0.107z W m K


   ; 

 aluminum alloy ( 5P ): 
   5 5

72.00x zE E GPa  , 
 5

26.9xzG GPa , 
 5

0.338xz  , 

   5 5 1622.9 10x z K      , 
   

15

0 169.0z W m K


   . 

The initial temperature of the beam 0 293 .T K  On the longitudinal surfaces of the beam constant 

temperature: 1 2285 , 273t K t K  . Heat is exchanged through the lateral faces with the external 

environment, while the heat flow density is variable along the section height: 
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212760.43 66.57 11.94z zq   . (41) 

The position of the center of stiffness of the section (figure 2b) is determined according to equation 

(3): 0.026078Oz m  . 

 
a b 

Figure 2. The scheme of kinematic restrictions and the cross-section 

of the beam (dimensions in mm ). 

The functions of physical and mechanical characteristics are formed according to equation (2): 
             

             
      

1 2

3 4

5

0.02608 0.02208 0.02208 0.01808

0.01808 0.02392 0.02392 0.02992

0.02992 0.03392 ,

S

a a a

a a

a

S H z H z S H z H z

S H z H z S H z H z

S H z H z

         

        

   
 (42) 

Using equations (41), (42) according to equation (12), the constants necessary for determining the 

distribution of the temperature field are calculated: 

 
2

0 0.42467 , 0.11762 , 12B m K W Q K m t K       
. (43) 

The desired temperature T  distribution function was obtained according to equation (13) using 

equations (41), (42), (43) and given initial data. Graphs of the distribution of temperature T  and heat 

flow density zq  over the section height along with the distributions 01 z

  and q
 are shown in 

figure 3. 

The constants necessary for determining the SSS of the bar are determined according to equations 

(26), (29) and (33) using equation (42) and the obtained function T : 
3

0 2 2

26 61764.80 10 , , 1244.11 10 ,

3130.29 , 77.34

9296.26 1

89

0

.T T

B N m B N m D m

N N M N m

      

    



 (44) 
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Figure 3. Initial data and results of solving the heat conduction problem 

The problem under consideration is statically indeterminate; therefore, the kinematic 

(
1 2 10, 0, , 0| , | , |x z z x z z z z xu u w      ) and static ( 1 1 1, ,x z yN Q M ) initial parameters are unknown. To determine 

them, we used the conditions of the static equilibrium of the beam and the kinematic conditions 

corresponding to the accepted types of fastenings. 

Similarly to [21], rigid and simple fastening of the ends of the beam were modeled according to the 

diagram in figure 2a: 

 1 2 1 1 10, 0, 0, , ,| 0, | 0, | 0, | 0, | 0x z z x z z x z z x l z z x l z zu u w u w             
. (45) 

The missing equations are obtained from the conditions of static equilibrium 

 
 1 1 1 10, 0, 0x s z s y s sN X Q Z M Z l X z         

. (46) 

According to equation (45), the kinematic parameters are equal to zero, and the static ones are 

obtained by a joint solution of equations (45) and (46) with allowance for equation (38): 

 1 1 11307.59 , 207.31 , 115.16x z yN N Q N M N m    
. (47) 

Substituting the initial data, the corresponding functions equation (42), the constants equations 

(44), (45), (47) and the temperature distribution T  in equations (36) and (38), we obtain the desired 

distribution functions of stresses and displacements. 

Normal x  and shear xz  stress distributions for individual sections and fibers are shown in 

figure 4. 

An abrupt change in the longitudinal elastic modulus at the boundaries of the layers (figure 4a) 

leads to discontinuities of the function x . According to figure 4b, c, d the distribution of x  on the 

height of various sections is disproportionate, however, for each longitudinal fiber, in particular the 

outermost fibers (figure 4e), the normal stresses vary according to their own linear law. The shear 

stresses are constant along the length of the beam and vary according to a parabolic law along the 

thickness of each layer (figure 4f). 
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Figure 4. Graphs of normal and shear stresses. 

Graphs for stresses x  show that even with a relatively small temperature change in the layers of 

the composite beam, significant tensile and compressive longitudinal forces can occur. 

It is important to note the ambiguous effect of such stresses on the margin of strength of the beam. 

For example, under the action of a useful uniform load down, in the middle part of the beam, they will 

increase strength due to thermal tensile forces in the upper layer, but near the supports they will 

decrease on the contrary. Thus, for given temperature conditions of work of a multilayer beam by a 

certain alternation of layers, it is possible to increase its strength due to the effect of temperature 

redistribution of stresses between layers and sections. 

The distributions of the longitudinal u  and transverse w  displacements for the extreme fibers and 

middle sections are shown in figure 5. 

Graphs figure 5a, c shows the correspondence of the obtained solution to kinematic conditions 

equation (45). 

Due to the presence of a transverse force in the graph of the distribution of longitudinal 

displacements u  (figure 5b), one can observe a curvature of the cross sections, which is absent with 

other methods of securing the beam. The total curvature of the cross section is slightly enhanced by 

the displacement component of the displacement variable (figure 5d), which in this case is caused by 

the Poisson effect and thermal expansion of the layers. 

The graphs of the transverse displacements w  of the lower and upper fibers (figure 5c) show a 

slight decrease in the stiffness reserve of the beam for the case of a downward payload. This, 

obviously, can be avoided by changing the order of alternating layers. 
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Figure 5. Graphs of longitudinal and transverse displacements. 

6. Summary 

Thus, an exact analytical solution to the problem of plane thermoelastic bending of a multilayer beam 

section has been constructed, which includes a solution to the heat conduction problem equation (13) 

and a solution to the theory of elasticity equations (36)-(38). The obtained solution allows us to 

determine the temperature field distribution inside the multilayer beam and the associated SSS with 

taking into account the different temperatures of its longitudinal surfaces and an arbitrary law of 

change in the heat flux density through the side faces. The solution is built for a beam with an arbitrary 

number of homogeneous or continuously inhomogeneous layers, it takes into account the orthotropy of 

the physical and mechanical characteristics and the flexibility of the transverse shear and compression 

of their materials. 

The results of solving the test problem of thermoelastic bending of a five-layer bar with rigid and 

hinged fastening of the ends showed that a relatively small temperature change for such an element 

can cause significant stresses (up to 17% of the permissible) and significant deflections (14.8% of the 

permissible). Moreover, depending on the type of payload, the consideration of temperature stresses 

and displacements can lead to both a decrease and an increase in the strength and rigidity of the beam. 

The obtained general solution can be used to refine the assessment of the strength and stiffness of 

multilayer beams taking into account temperature deformations, as well as to develop applied methods 

for calculating such elements. 
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