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A B S T R A C T

The way of analysis of thermodynamic systems, which takes into consideration systems’ phase volumes, is sug-
gested. A validity of such approach was verified by the example of studying of extrathermodynamic compensa-
tions. Several types of exact linear extrathermodynamic compensations as well as their peculiar type, which
peculiarity is indefinable compensation temperature, are established. The criteria that specify these types are
stated. These results are illustrated by the identified exact extrathermodynamic compensations in formation of
pyrene excimers.
1. Introduction

Thermodynamics is a rigorous theory, which, however, does not
explain some thermodynamic topics. In particular, this remark refers to
enthalpy-entropy compensations. The extrathermodynamic effect of
enthalpy-entropy compensations, which is known in many fields of
physics, chemistry and biology, is inherent in some series of related
systems [1, 2, 3, 4, 5]. Its essence is expressed by the linear regression:
ΔHabðjÞ ¼ TαΔSabðjÞþ α, where ΔHabðjÞ and ΔSabðjÞ are changes in
enthalpy and entropy in a certain process between states a and b in j-th
system, Tα is a temperature characteristic of this process (the compen-
sation temperature), α is a series constant. As regards the circumstances
leading to the linearity of compensations ΔH-ΔS, their understanding is
the unsolved problem, in relation of which different opinions were
advanced [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15].

The inability of thermodynamic theory to solve the problem of
extrathermodynamic phenomena seems to be due to ignoring phase
volume of systems. The concept of phase volume is completely absent in
thermodynamics. The reason is that thermodynamics usually considers a
system, whose phase volume is a predetermined and invariable magni-
tude. Nevertheless, one can show that extrathermodynamic phenomena
include several types of linear extrathermodynamic compensations,
which origin is connected precisely with phase volumes of systems [16,
17, 18]. In addition, this study is the first to pay attention to the new type
of extrathermodynamic compensation that is very peculiar. Its origin is
also related to the behavior of phase volume in a series of systems. The
peculiarity of this type of compensation is the plot of enthalpy changes
vs. entropy changes represents the only point, and hence, the compen-
sation temperature is undefinable. Up to now such type of
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extrathermodynamic compensations has been out of eyeshot of anyone.
This work purpose is to develop such approach to the analysis of to-

talities of thermodynamic systems, which could provide a unified view of
compensation for all its types. In the next section the main points of this
extrathermodynamic approach are set out.

2. Method

The basic equation of thermodynamics for heat quantity δQ is

δQ¼ dE þ
X

Aidai (1)

Here E stands for energy of a system, Аi stands for i–th generalized
force, which is developed by a system in a direction of the generalized
coordinate ai. In terms of mathematics, Eq. (1) represents the Pfaff form.
At one time, Carath�eodory noticed this fact and formulated the theorem
on integrating denominator of this form [19]. He showed that the Pfaff
form is able to possess this denominator only if near to each equilibrium
state of a system there are such its states, which are unachievable in any
equilibrium adiabatic way. This condition is essentially an expression of
the second law of thermodynamics. Surely, if integrating denominator of
the Pfaff form exists and this denominator is absolute temperature Т , a
division of heat quantity by temperature yields the exact differential of
entropy, δQ =T ¼ dS, and Eq. (1) will be holonomic:

δQ¼ dE þ
X

Aidai ¼ TdS (2)

It is apparent that the second law of thermodynamics evidences a
noncoincidence of the isotherm and adiabat for equilibrium processes.
y 2019
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This thesis can be illustrated with Fig. 1. The plot of Р (pressure that is the
generalized force) vs. V (spatial volume that is the generalized coordi-
nate), which represents the isotherm of ideal gas, is there depicted. The
transition of ideal gas from state 1 to state 2 is possible in the reversible
way along the isothermal curve (trajectory 1→2) and in the adiabatic
way, by irreversible gas expansion in emptiness (trajectory
1→1’→2’→2). State 2 is precisely a state unattainable from state 1 by any
reversible adiabatic process.

In the general case, generalized forces and coordinates can be very
various. Therefore, it is impracticable to establish any analytical depen-
dence between S and E (orH (¼Eþ PV)) based on Eq. (2). For this reason,
the enthalpy–entropy compensation is a controversial topic of
thermodynamics.

The connection between S and H can be established based on the
premise related to phase volume of thermodynamic systems. To discover
here this premise, let us return to Fig. 1, which illustrates isothermal and
adiabatic transitions between gas states 1 and 2. The adiabatic transition
is uncompensated and hence irreversible; therefore, for this process it is
true:

TdS > dE þ PdV : (3)

Both of these transitions take place under constant phase volume.
However, when phase volume is variable, one more adiabatic way of
transition between gas states 1 and 2 becomes possible. This way can be
seen after correction of Eq. (3): TdS¼ dE þ PdV þ TdS0 or

dEþPdV ¼ dH ¼ TdðS� S0Þ: (4)

Here S0 ¼ Nk ln Ω, N is a number of particles, k is the Boltzmann
constant, and Ω is phase volume. Eq. (4) shows that a change of phase
volume can compensate for a change in entropy.

Eqs. (2) and (3) on the one hand and Eq. (4) on the other differ
fundamentally in kind. The fundamental difference is that Eqs. (2) and
(3) describe a thermodynamic system with stationary Ω, whereas Eq. (4)
deals with variable phase volume of a system. Just as diverse thermo-
dynamic reversible transitions are characterized by Eq. (2), diverse
extrathermodynamic reversible transitions are characterized by a few
equations like Eq. (4). Here the term “thermodynamic” is applied to
processes occurring under constant phase volume and the term “extra-
thermodynamic” is associated with changes in phase volume. Generally,
the term "extrathermodynamic" is perceived as synonymous with the
concept "empirical" [1, 3], but we consider this term is the appropriate
term for defining the reversible transitions featured by equations like Eq.
(4). Below are all types of such equations.

There are two extrathermodynamic ways of heat expenditure and,
accordingly, two extrathermodynamic basic equations:

δQ¼ dH ¼ TΩdσΩ; (5)
Fig. 1. Transitions between ideal gas states 1 (pressure is P1, volume is V1) and
2 (pressure is P2, volume is V2): reversible (along the isotherm, trajectory 1→2)
and irreversible (by adiabatic expansion, trajectory 1→1'→2'→2).
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δQ¼ dH ¼ TMdσM : (6)

Here enthalpies and statistical quantities σΩ and σM make unequal
sense. The sense of the quantity σΩ appearing in Eq. (5) can be easily
seen. So, let us imagine that a system that exist initially in the original
state with E, V, ω, Ω ¼ 0 obtains the increments δQ ¼ Eþ PV ¼
TΩNk lnðω=ΩÞ. Here ω is a statistical weight that defines entropy S ¼
Nk ln ω. It is obvious that one and the same value δQ and the same in-
crements V and lnΩ will give a spectrum of correlated values Е and S.
This spectrum of the E–S pairs defines a series of systems of theΩ–type. A
series displays exact E–S compensation: EðjÞ þ PV ¼ TΩNk lnðωðjÞ=ΩÞ,
where V and Ω are constants of a series. It is apparent that the quantity
σΩ ¼ Nk lnðω=ΩÞ represents the normalized entropy, and enthalpy in Eq.
(5) is the quantity with the same value V.

For others Ω and V, which values depend on temperature ТΩ, other
series of systems of the Ω–type can be obtained from the same initial
system.

In that case, where δQ is expended on increments of both ω and Е, and
Ω and V, a series of systems is characterized by the quantity σM (Eq. (6)).
This quantity, which can be termed the normalized extraentropy, will be
σM ¼ Nk lnðωΩ=MÞ. Such definition of σM was argued in the work [17].
However, the sense of quantity M remained obscured. The sense of
normalizing divider M can be shown in such way.

In the field of statistical mechanics the Gibbs thermodynamic po-

tential, ΨG ¼ Eþ PV � TS, can be defined as dWðX;VÞ ¼ e
ΨG�EðXÞ�PV

kT dXdV .
Here Х is the set of canonical variables of a system,H ðX;VÞ¼ EðXÞ þ PV
is the Hamiltonian function of a system, and dW(X,V) is probability of
that a system is in the state with values of variables between Х and ХþdX
as well as V and V þ dV. After integrating this equation over the layer
Ω(E )V(E )dE , which lies between the surfaces of constant energy
H ðX;VÞ ¼ E and H ðX;VÞ ¼ E þ dE , it is possible to obtain the energy
distribution of states in an isothermal–isobaric ensemble:

e�
ΨG
kT ¼

Z
e�

E
kTΩðE ÞVðE ÞdE : (7)

In a system with variable Ω, along with V, quantity 1/Ω acts as a
coordinate, and the Hamiltonian function becomes

H

�
X;V; 1Ω

�
¼ EðXÞ þ PV þ TNk ln Ω [17]. Then Eq. (7) can be modified:

e�
ΨG
kT ¼ ∬ e�E

kT
ΩðE Þ
Ω VðE ÞdE d

�
1
Ω

�
. Because

R
ΩðE ÞdE ¼ R

dX ¼ Ω,

quantity ΩðE Þ
Ω does not depend on Ω, but V(E ) is related with Ω. We

consider only equilibrium states of a system; this means that spatial
volume of a system does not exceed some its maximal value M ¼Z VMax

0
dV . Normalizing V(E ) to this volume M, one can determine

e�
ΨM
kT ¼ Ω

M
e�

ΨG
kT ¼

Z
e�

E
kT
ΩðE Þ
Ω

VðE Þ
M

dE : (8)

Eq. (8) describes the energy distribution of states in an extra-
thermodynamic ensemble of the M–type with the potential ΨM ¼ H�
TS� TNk ln Ωþ TNk ln M. At a selected compensation temperature ТM,
Eq. (8) features a series of systems that exhibit an exact H–(S þ NklnΩ)
compensation: EðjÞ þ PVðjÞ ¼ TMNk lnðωðjÞΩðjÞ=MÞ, where M is a series
constant. At other temperatures ТМ, Eq. (8) describes other series that are
united by the same value of M.

Provided that V is a constant, from Eq. (8) the following can be ob-

tained, e�
ΨΩ
kT ¼ R

e�
E
kT
ΩðE Þ
Ω dE , that defines the extrathermodynamic po-

tential ΨΩ as ΨΩ ¼ H� TSþ TNk ln Ω.
Thus, in thermodynamics all reversible transitions are featured by the

one equation (Eq. (2)), which defines the one type of integrating de-
nominator – temperature Т – and the one type of statistical quantity –

entropy. In the extrathermodynamic case, reversible transitions are
featured by two equations,
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δQ¼ dH ¼ TΩdσΩ ¼ TΩNkd ln
ω
Ω
; (9)
δQ¼ dH ¼ TMdσM ¼ TMNkd ln
ωΩ
M

; (10)

that gives two types of integrating denominator – temperatures ТΩ and
ТМ – and two types of statistical quantities – the normalized entropy σΩ ¼
Nk lnðω=ΩÞ and normalized extraentropy σM ¼ Nk lnðωΩ=MÞ.

In the case, where δQ ¼ 0, there is one more extrathermodynamic
equation that features the peculiar process:

δQ¼ dH ¼ Tdσ0 ¼ TNkd ln
ω
Ω
: (11)

Eq. (11) characterizes transitions between the systems, for which ω ¼
Ω, but, unlike Eq. (9), both ω and Ω are variables. Hence, σ0 represents
the third type of extrathermodynamic statistical quantity. As σ0 is always
zero, the concept of integrating denominator becomes here meaningless.
Eq. (11) defines series of systems, which can be named series of the
zero–type.

Eqs. (2), (9), (10), and (11) feature real or imaginary processes. A
reversible chemical reaction is the real process featured by Eq. (2).
Creating phase volume is a trick; therefore, Eqs. (9), (10), and (11)
feature imaginary reversible transitions. Eq. (2) can feature imaginary
reversible transitions, too. For instance, it is the isothermal process of gas
expansion (trajectory 1→2, see Fig. 1). In principle, it is a realizable
process, but this implementation (infinitely slowly and infinitely long) is
possible only theoretically. Despite it, this theoretical possibility gives
grounds to compare gas states, which are parted by a reversible ther-
modynamic transition. On the contrary, there are no grounds to compare
gas states, which are separated by the irreversible thermodynamic tran-
sition along the adiabatic trajectory 1→1’→2’→2 (see Fig. 1). However,
in the latter case there is a theoretical possibility for reversible extra-
thermodynamic transitions, which are featured by Eq. (11).

The conditions of reversibility for a thermodynamic process are
continuous changes of generalized forces and coordinates. Thermody-
namic irreversibility of the free expansion of gas is associated with
discontinuity of values of the generalized force; in the present case, this is
pressure. The example with ideal gas shows that extrathermodynamics
allows analyzing irreversible thermodynamic transitions of this type.

The situation with real systems is similar to that with ideal gas.
Consider that a system, say system j ¼ 1, can be transformed in a
reversible thermodynamic way into a state that corresponds to system j¼
2. Such transition is theoretically possible, but in actual practice it is
impossible to provide compensations to all generalized forces. The
thermodynamic transition between these states should be considered as
an irreversible transition. At the same time, prepared series of experi-
mental samples can be considered as the systems formed from scratch by
the reversible extrathermodynamic transitions, which are described by
Eqs. (9), (10), and (11).

The following can complete the above reasoning. The canonical
variables Х represent pairs of q and p, where q is coordinates and p is
pulses in directions of these coordinates. In the statistical mechanics
there is the theorem on equipartition of energy on degrees of freedom

[20]. As for coordinates, this theorem reads q ∂H
∂q ¼ kT , where the

overhead line denotes ensemble average. Note that here a nonzero value
of kT can be considered as the condition determining the possibility of
motion in a direction of the coordinate q. Extrathermodynamic ensem-
bles are described by two conjugate extracoordinates: V and 1/Ω. As was

mentioned earlier [18], 1Ω
∂H

∂ð1=ΩÞ ¼ � kT, so that V ∂H
∂V þ 1

Ω
∂H

∂ð1=ΩÞ ¼ 0. This

shows that in the extrathermodynamic case any transitions in directions
of the coordinates V and 1/Ω is not supposed. Therefore, it is not correct
to speak about the extrathermodynamic potentials ΨΩ or ΨM . Hence the
logical conclusion: extrathermodynamic states create a coordinate space
for diverse thermodynamic transitions.
3

Really, Eq. (2) contains coordinates along which there can be ther-
modynamic transitions between equilibrium states of a system. Each such
state is uniquely determined by values of the coordinates ai. To feature
these states of a system, it is necessary to take into account an indeter-
minate number of generalized coordinates. At the same time, series of
extrathermodynamic states can create a two-dimensional coordinate
space for reversible thermodynamic transitions. The scales of this space
are preset by the temperatures ТΩ and ТМ, which can be determined from
experiments. A pair of values ТΩ and ТМ uniquely indicates each of
physically permissible equilibrium states of a system. Values ΔH and ΔS
of any reaction a⇄b, which proceeds in a system, are functions of the
variables ТΩ and ТМ. Values ΔH and ΔS develop into surfaces in some
ranges of values ТΩ and ТМ, which are specific for each reaction.

A straight line can better or worse approximate any array of ΔH–ΔS
data that feature a reaction. However, an exact linear compensation will
be only for those data, which will be mapped in space (ТΩ;ТМ) on lines ТΩ

¼ const (compensations of the Ω–type),

ΔHabðjÞ¼TΩΔSabðjÞ � TΩNkΔ lnΩab; (12)

or on lines ТM ¼ const (compensations of the M–type),

ΔHabðjÞ¼ TMðΔSabðjÞ þ NkΔlnΩabðjÞÞ � TMNkΔlnMab: (13)

As can be seen, in the literal sense of the word, the exact linearΔH–ΔS
compensation does not exist at all, but there are two other exact linear
compensations: ΔE–ΔS and ΔH–(ΔS þ NkΔlnΩ).

Extrathermodynamic transitions are not limited to Eqs. (9), (10), and
(11). A system can form more than one state. In particular, if the system,
which is characterized by a certain value of M, gets a chance to form n
states, Eqs. (9) and (10) take the form

δQ¼
X

dHn ¼ TΩ

X
dσΩn ¼ TΩNk

X
d ln

ωn

Ωn
; (14)

δQ¼
X

dHn ¼ TM

X
dσMn ¼ TMNk

X
d ln

ωnΩn

M
: (15)

Then, if the states reveal themselves individually, one can observe n
series of systems of the Ω–type:

ΔHab1 ¼ TΩNkΔln
ωab1

Ωab1
;…

ΔHabn ¼ TΩNkΔln
ωabn

Ωabn
;

(16)

and n series of systems of the M–type:

ΔHab1 ¼ TMNkðΔlnωab1Ωab1 � ΔlnMnÞ;…
ΔHabn ¼ TMNkðΔlnωabnΩabn � ΔlnMnÞ: (17)

Strictly speaking, Eq. (16) define only one series of system of the
Ω-type and Eq. (17) define only one series of system of the M-type.
Simply in this case enthalpy and entropy of systems undergo n–fold
degeneration.

The following are examples of all of the referred types of extra-
thermodynamic compensation.

3. Discussion

3.1. Compensations of the Ω- and M-types

Two systems can be assigned to the same type of Ω, if values of their
magnitude Δ ln Ω are the same. Phase volume of a system whose equi-
librium transitions are defined by Eq. (2) is a quantity that considers all
degrees of freedom of a system, which connect with its coordinates аi.
Eqs. (12), (13), (16), and (17) do not contain any special coordinates аi;
therefore, phase volume of the system states that are obtained by the
extrathermodynamic transitions takes into account only the canonical
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variables featuring these states. Because series of systems of the Ω- and
M-types are defined with constant temperatures ТΩ and ТM, here only the
configurational part of phase volume is significant.

Thus, it may be found that values of phase volume of any reaction a⇄
b have some connection with the size of its reactionary area. As a
chemical modification can change the size of reactionary area, it should
be expected that series of systems of the M–type are associated with
chemical modifications, whereas series of systems of the Ω–type are
associated with a change in physical influence on a system. Evidently, in
many cases such statement is correct. However, there may be exceptions,
when chemical modifications of reagents lead to a result like a change in
properties of medium, but do not noticeably affect the size of reactionary
area; though, perhaps, there may be an opposite situation, where a spe-
cific solvent influences reactionary area. Therefore, it is essential to find
out a concrete situation for each case at hand. Anyway, the fact of a
change in phase volume can be definitely established by measuring
changes in ΔV.

The Ω– and M–compensations can be illustrated by the example of
data from the work [21], which concern a formation of intramolecular
pyrene excimers in bichromophores. Excimers are physical dimers of
chromophores that are stable only in an excited state [22]. The interest of
these data lies in their variety, in such variety, which is not in data from
other publications. As we have already reviewed these data in the works
[16, 17, 18], here we briefly dwell on them, but present the analysis in
new, better visual perspectives.

TheΔH-ΔS data relating to the formation of excimers are presented in
Fig. 2. These data are presented in the form, in which they were pre-
sented in the work [21]. These data apply to meso-2,4-di (2-pyrenyl)
pentane; rac-2,4-di (2-pyrenyl) pentane; 1,3-di (2-pyrenyl) propane; 1,
16-di (1-pyrenyl) hexadecane, and 1,3-di (1-pyrenyl) propane, which
are dissolved in various organic solvents. 1,3-Di (1-pyrenyl) propane
forms two excimer states d1 and d2: d1⇄Pyþ Py*⇄d2, whereas the other
bichromophores form only one excimer state d: Py þ Py*⇄d [21]. The
state of Py þ Py* is a monomeric (m) state, where Py and Py* denote
unexcited and excited pyrene, accordingly. It should be noted that the
scheme d1⇄Py þ Py*⇄d2 presents a special case of formation of several
states in a system. This scheme corresponds to value n ¼ 2 in Eqs. (14)
and (15).

As can be seen, all data in Fig. 2 excellently fall on the lines L1 and L2.
Fig. 2. Plot of ΔH vs. ΔS for intramolecular excimers formation with a number
of dipyrenylalkanes in various solvents. Data from Ref. 21.
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However, these lines do not make sense. It is rather an illustration of that
that statistics can be very deceptive. At the same time, six lines shown in
Fig. 3 are not without meaning. These are the same data as in Fig. 2, but
they are organized in four series of systems of the Ω–type (Eq. (12)) and
in one series of systems of the double Ω–type (the case of Eq. (16), where
n ¼ 2). It was guessed here that a solvent does not influence an area of
interchromophoric interaction in bichromophores. It was also accepted
that a change of intramolecular area of interaction between pyrene
moieties, that is, a change in excimer's phase volume, is attributed only to
changes in a structure of interchromophoric chains. Compensation tem-
peratures and other parameters concerning the Ω– and M–series that
were calculated within the frame of such assumptions are listed in the
work [18].

For series of the Ω–type, the values ΔlnΩ can be founded at in-
tersections of the dependences ΔH/TΩ with the line ΔS ¼ 0 (see Fig. 3).
According to Eq. (12), these values are rigidly related to the compensa-
tion temperatures ТΩ. The dependence in Fig. 4 shows that a higher
compensation temperature ТΩ corresponds to a smaller volume of reac-
tionary area.

The compensations of the M–type that characterize the formation of
pyrene excimers in series of systems with variable Ω are presented in
Fig. 5. All of them were calculated using values ΔlnΩ, which were
determined from the dependences shown in Fig. 3. As was expected, the
set of linear relations breaks up into two clusters. These data fall on two
lines (the lines L1 and L2) with different values of intercept: (RΔlnМ and
2RΔlnM). Notice that the lines L1 and L2 in Fig. 5, and the lines L1 and L2
in Fig. 2 fit different pluralities of systems.

Four series of systems that are considerably divergent with the gen-
eral body of data (see Fig. 5) are undoubtedly a result of experimental
errors. All these series consist only of two systems, and even inappre-
ciable errors in determining their parameters can lead to significant er-
rors in determining temperatures ТМ, and so, of magnitudes Δ lnM.

Thus, although all data in Fig. 5 feature the same nominal reaction –

the formation of pyrene excimers, here are two different thermodynamic
systems. It is impossible to perform transitions between states of these
two thermodynamic systems in a reversible way. The reason for this is the
discrete nature of a change in values in the line of quantitiesM; M2

…Mn

(see Eq. (17)).
Fig. 6 presents surface ΔH(ТΩ,ТМ) for pyrene excimers forming as
Fig. 3. Plot of ΔH/TΩ vs. ΔS for intramolecular excimers formation with a
number of dipyrenylalkanes in various solvents.



Fig. 4. Connection between compensation temperatures of ТΩ and values of
phase volume of pyrene excimers in various bichromophores.

Fig. 5. Plot of ΔH/TM vs. ΔS þ RΔlnΩ for intramolecular excimers formation
with a number of dipyrenylalkanes in various solvents. R is the universal
gas constant.

Fig. 6. ΔH as function of temperatures ТΩ and ТМ for the systems, data of which
are laid on the line L1 in Fig. 5. The grey points mark the orthogonal projections
on corresponding planes.
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Pyþ Py*⇄d. Analogous surface for pyrene excimers forming as d1⇄Pyþ
Py*⇄d2 is shown in Fig. 7. Inasmuch as in the latter case there are two
excimers, this surface is two-layer. It is evident that there is not enough
data to plot a full-fledged two–layer surface. Actually, whereas Fig. 6
presents four series of systems of theΩ–type and eight series of systems of
the M–type, Fig. 7 presents only one series of the doubly Ω–type, which
consists of seven doubly degenerated systems. Each of seven "series" of
the doublyM–type contains only one doubly degenerated system. Despite
this, Eq. (17) allow us to estimate temperatures ТМ for these single-
–system "series".
5

3.2. A compensation of the zero-type

Eq. (11) combines systems differing only in the scale of phase space,
which therefore do not create any coordinate axis for thermodynamic
transitions. A series of systems of such zero–type is a series of gas equi-
librium states parted by an irreversible adiabatic thermodynamic tran-
sition. However, it is a model. As for experiments, extrathermodynamic
compensations of this type were not known before. Meanwhile, there is
the regularity, which origin can be explained only as the manifestation of
the enthalpy-entropy compensation of the zero–type.

The way, in which extrathermodynamic compensation of the zer-
o–type reveals itself, can be seen in Fig. 8, where the fluorescence spectra
of some pyrenecontaining systems are presented. Here the structured
fluorescence is emission of monomer chromophore and the broad
structureless band pertains to excimers. The dependences of d ln IðνÞ =dν
that characterize the excimer components of these spectra, are inserted in
the upper part of Fig. 8. It is visible that all these dependences are
intercrossed at the one point close to wavenumber ν¼ 19600 sm�1. Such
characteristic point in spectra of pyrene excimers was previously re-
ported [23]; however, no possible explanation was suggested to this
observation. This point is precisely a manifestation of the extra-
thermodynamic compensation of the zero–type.

Indeed, each excimer state that is characterized by some emission
vawenumber ν arises due to the exciton–resonance interaction between
chromophores [22], which causes a splitting of the 1La (in the Platte
notation [24]) molecular level of energy. Different values of ν correspond
to different degrees of overlapping of molecular electron shells. In doing
so, attracting exciton–resonance forces compete with repulsive forces
between electrons that forms a certain potential surface for an excited
chromophore in the action field of its unexcited partner (or viceversa).
This surface in coordinates q can be featured by the thermodynamic
potential ΨGðνÞ ¼ EðνÞþ PVðνÞ� Tk ln ωðνÞ. Energy E(ν) is a result of
superposition of attractive and repulsive forces in those excimer struc-
tures, which provide an overlapping of molecular electron shells that
corresponds to the given value ν. The magnitude V(ν) can be presented as
the difference of vðνÞ and vðν þ dνÞ. Magnitudes vðνÞ and vðνþdνÞ are
spatial volumes of an overlapping of molecular electron shells in the
configurations that correspond to emitting states ν and νþ dν. Hence,
values V(ν) are one and the same throughout the entire spectrum ν, but
the same cannot be said of entropies SðνÞ ¼ k ln ωðνÞ. The excimer state
that corresponds to energy E(ν) can be realized in many configurations,
which number ω is a function of ν, and, moreover, ωðνÞ ¼ ΩðνÞ.

Accordingly, fluorescence intensity in an excimer band is

IðνÞ � e�
ΨG ðνÞ
kT , whence follows d ln IðνÞ

dν ¼ � 1
kT

dΨGðνÞ
dν . That is, the de-



Fig. 7. ΔH as function of temperatures ТΩ and ТМ for the systems, data of which
are laid on the line L2 in Fig. 5.

Fig. 8. Bottom: steady–state fluorescence spectra (excitation wavelength is 337
nm) of pyrene liquid solutions in metaxilol (1.2 10�4 mole/l, 1) and ethanol (1.3
10�2 mole/l, 2), and solid solution of 1-pyrene sulfonic acid in poly(vinyl
alcohol) (5 10�3 mole/l, 3). The spectra were recorded with LOMO SDL–2
spectrometer at a room temperature. Top: 1–3 are the dependences of
d ln IðνÞ =dν for spectra 1–3, respectively. IðνÞ is intensity in spectra of
fluorescence.
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pendences shown in the upper part of Fig. 8 characterize interchromo-
phoric potentials in excimer. The scheme of kinetic processes in excimer
can be defined as …⇄DðνÞ⇄Dðνþ dνÞ⇄…, where DðνÞ denotes an
excimer state emitting the light with wavenumber ν. It is visible that the
6

equilibrium thermodynamic transition between excimer states, that is,
the reaction, where 1

dν ðdEðνÞþ PdVðνÞ� Tkd ln ωðνÞÞ ¼ 0, is possible
only at the one point. This is the point at a minimum in the potential
ΨGðνÞ (a maximum of the excimer band), which, depending on an
environment of excimer, can shift on ν. However, for reversible extra-
thermodynamic transitions, the equilibrium reaction is only such reac-

tion, where 1
dν

�
dEðνÞþ PdVðνÞ� Tkd ln ωðνÞ

ΩðνÞ

�
¼ 0. As dVðνÞ ¼ 0 and

ωðνÞ ¼ ΩðνÞ, this reaction proceeds at the point of a minimum in po-
tential E(ν). For pyrene, this is ν0 ffi 19600 sm�1, as it is indicated by the
position of the characteristic point in the fluorescence spectra shown in

Fig. 8. Magnitude d ln IðνÞ
dν jν¼νo at this point is nothing else than

d ln IðνÞ
dν jν¼νo ¼ d ln ωðνÞ

dν jν¼νo . Its value does not depend on temperature,
because here the compensation temperature of reaction does not exist.
Therefore, it can be predicted that this characteristic point will be
observed under thermochromic transformations of excimer spectra, too.

The presented example of the zero-type compensation can be
formalized as

1
dν

dHðjÞjν¼νo
¼Tk
dν

d ln
ωðjÞ
ΩðjÞjν¼νo

¼ 0: (18)

The distinction between the above formula and expressions for linear
extrathermodynamic compensations is that Eqs. (12), (13), (16), and (17)
contain the finite differences Δ, whereas in excimer it is the reaction
between the infinitesimally close states ν0 and ν0 þ dν.

3.3. Closing remarks

The results stated in Section 2 are derived from the first principles
and are not specific. Therefore, they can be valid for any systems.
One can specify some of the work, the results of which are consistent
with the above ideas about the origin of extrathermodynamic
compensation. So, the authors [25], analyzing the enthalpy-entropy
compensation in complexation of different cations with organic li-
gands like crown ethers, described this process in such way, ΔH ¼
TΔS� TΔS0, that is similar to Eq. (12). Values of slopes in the ΔH �
TΔS plots (that is, the compensation temperatures) and the intercepts
TΔS0 depended on the nature of the ligand. Interpretation of the
intercept is interesting here: “TΔS0 value is the intrinsic entropic gain
upon complexation for each ligand, which is mostly attributable to
the desolvation of the complexed cation. This intrinsic entropic gain
indicates to what extent the cation solvation is replaced by the ligand
donors”.

In the work [26], for the isotropization processes occurring in euro-
pium complexes with organic ligands, it was found that the Ω values
differ in the cases of monodisperse and polydisperse ligands. Calculated
values of the magnitude M that figures in Eq. (13) turned out to be the
same in both cases. This result of analysis is similar to the construction of
the line L1 shown in Fig. 5.

In this work, various types of extrathermodynamic compensations
were presented precisely on the example of a formation of pyrene exci-
mers that allowed us to show a more full range of extrathermodynamic
relationships. It is obvious that the advantage of excimers as a model
system for studying of extrathermodynamic compensations is a possi-
bility of determining of their energy parameters by spectral methods. In
particular, this circumstance made it possible to detect the compensation
of the zero–type and to distinguish excimers d1 and d2 that are formed in
bichromophores. Calorimetric measurements, for example, if there
would be such possibility, would hardly be able to determine the
contribution of each of excimers d1 and d2 to the total heat efficiency of
their formation.
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4. Conclusions

The main result of this work is the basic extrathermodynamic re-
lations represented by Eqs. (11), (14), and (15). Eqs. (9) and (10) are a
particular case of the last two equations (if n ¼ 1). The approach used
here to achieve this result makes it possible to draw very concrete con-
clusions with regard to extrathermodynamic compensations, one of the
types of which is the well-known enthalpy-entropy compensation. It is
shown that extrathermodynamic compensations are exact regularities,
the specific type of which is determined by the nature of the behavior of
systems’ phase volume in their series. At present time, the samples of
extrathermodynamic compensations, which are described by Eqs. (12),
(13), and (18) as well as by Eqs. (16) and (17) (for the case n ¼ 2), are
found. In this paper, all these types of compensation are shown on the
example of data relating to a formation of pyrene excimers.
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